SCM-TR

世界中医药学会联合会 World Federation of Chinese Medicine Societies

SCM-TR 0009-2025

通络药物系统干预心血管事件链专家共识

Expert consensus on the intervention of the cardiovascular continuum by Luobing theory-based Chinese medicine formula

(草案,以出版稿为准 Draft)

目 次

前 言	3
引 言	
1 范围	7
2 规范性引用文件	
3 术语和定义	
3.1 糖尿病	
3.2 冠状动脉粥样硬化性心脏病	
3.3 缺血性脑卒中	
3.4 心房颤动	
3.5 室性早搏	
3.6 心力衰竭	
4 通络药物与心血管事件链	
4.1 通络药物	
4.2 通络药物与糖尿病及糖尿病前期	
4.3 通络药物与缺血性心脑血管疾病	
4.4 通络药物与心律失常	
4.5 通络药物与慢性心力衰竭	
5 总结	
附录 A (规范性) 研究方法与技术路线	
附录 B (资料性) 临床研究文献筛选标准及证据级别	
参考文献	
Preface 42	
Introduction	
1 Scope	
2 Normative references	
3 Terms and definitions	
4 Luobing theory-based medicine and cardiovascular continuum	
4.1 Luobing Theory-Based Medicine	
4.2 Luobing Theory-Based Medicine and Diabetes Mellitus/Prediabetes	
4.3 Luobing Theory-Based Medicine and Ischemic Cardiovascular and Cerebr Diseases	
4.4 Luobing Theory-Based Medicine and Arrhythmias	
4.5 Luobing Theory-Based Medicine and Chronic Heart Failure	70
4.5.1 Formulation Characteristics of QLQX —— "Simultaneous Regulation of Qi, E	slood, and
Water"	
5 Conclusion	75
Annex A (Normative) Methods and Technical Approach	
Annex B (Informative) Literature Screening Criteria and Evidence Levels	
Bibliography	80

前言

主要起草单位:河北省络学创新医药研究院。

参与起草的单位:上海复旦大学附属中山医院、北京中医药大学东直门医院、武汉大学 人民医院。

主要起草人: 钱菊英、林谦、黄从新、贾振华

参与起草人(按姓氏拼音排序):

中国:安冬青、白玲、白雯、柏勇平、卜培莉、曹克将、常丽萍、陈会生、陈莉明、陈秋、陈阳美、丛洪良、丁春华、董强、董吁钢、董艳红、范玉华、高传玉、高怀林、葛均波、宫丽鸿、谷文萍、韩燕、胡文立、黄从新、黄鹤、黄勇华、霍勇、季晓平、孔洪、李宾公、李萍、李为民、李新立、连凤梅、梁春、梁志刚、廖德宁、廖玉华、林谦、刘晨、刘刚琼、刘海霞、刘建萍、刘启明、刘强、刘彤、刘依、刘莹、陆灏、陆正齐、罗素新、毛威、倪青、彭小平、浦介麟、齐晓勇、钱菊英、钱秋海、钱孝贤、秦贵军、邱峰、屈秋民、冉兴无、沈德良、宋波、宋海庆、孙健、孙志军、唐俊楠、陶剑虹、田庄、王翠兰、王丹丹、王江、王连生、王显、王玉堂、吴宗贵、徐会圃、徐健、严激、杨杰孚、杨伟民、杨新春、杨跃进、殷跃辉、由倍安、袁祖贻、苑海涛、张波、张杰文、张金盈、张力辉、张文忠、张心刚、张彦周、张运、张子新、赵传胜、赵性泉、郑良荣、郑强荪、钟敬泉、周京敏、周淑娴、周亚峰、朱明军、邹建刚:

美国: 杨观虎;

英国: 陈赞育、张宏易;

加拿大: 吴滨江;

泰国:曹作军。

本文件的起草程序遵守了世界中医药学会联合会发布的 SCM1.1-2021《标准化工作导则第 1 部分:标准制修订与发布》。

本文件由世界中医药学会联合会发布,版权归世界中医药学会联合会所有。

引言

近 30 年来,心血管疾病作为重大公共卫生问题一直是全球死亡的主要原因[1.2]。《健康中国 2030 规划》 ^[3]提出降低心血管疾病等重大慢性病过早死亡率的目标,实现该目标需要西医、中医等多学科共同参与,最大限度遏制心血管疾病的发生发展。20 世纪 90 年代美国心脏病专家 Braunwald 教授提出"心血管事件链"概念 ^[4],带来心血管疾病全程干预理念的思维转变,也对单靶点、单因素、单环节的药物治疗提出挑战 ^[5-9],这与中医整体系统的理论特色相契合。近年来,中医络病理论指导下的通络药物在心血管疾病防治方面取得系列重大突破 ^[10],为更好促进中西医理念的更新与融合,为系统干预心血管事件链提供具有中国特色的中西医结合临床药物治疗方案,进一步提高心血管疾病防治水平,特此发布通络药物系统干预心血管事件链专家共识。

0.1 心血管事件链概念及其对相关疾病的防治意义

"心血管事件链"但是指以动脉粥样硬化为基础的心血管疾病由高危因素聚集导致动脉硬化,易损斑块破裂引起心肌梗死,出现心律失常、心力衰竭(以下简称心衰)直至死亡的全过程,呈现出多因素、多环节作用下因果相连、递进发展、事件突发、后果严重的病变特点[5-9]。该概念的提出反映了心血管疾病整体性与复杂性的系统特征,带来防治理念由既往关注单因素、单环节、单靶点干预,向整体、连续、动态、全程干预的系统思维转变。围绕心血管事件链关键病理环节重大疾病,聚焦高危因素、冠状动脉易损斑块、急性心肌梗死再灌注治疗后心肌保护、心律失常及慢性心衰,在解决当前病变瓶颈难题的同时,控制上游危险因素,防止病变向下游传变,形成治中寓防、防中寓治、防治结合的系统干预方案,有助于从根本上阻断心血管事件链,遏制心血管疾病的发生率及死亡率。

0.2 脉络学说的提出及对防治心血管事件链的意义

脉络学说是传承中医血脉理论创立的指导血管病变防治的原创理论,中医学在两千多年学术发展过程中虽有关于血管病变防治的相关理论记载,但由于历史原因造成血脉与脉络学说的缺位,致使关于血脉及脉络病变的理论认识和治疗方药缺乏整理,未形成系统的理论学说,导致对血管病变防治具有重要作用的该理论未能发挥其应有的指导作用。中医脉络学说在整体观的指导下,吴以岭院士将其进一步发展。脉络学说指出,从心血管事件链的早期阶段到严重的心血管事件发生,都与血管微循环障碍有关。从中医角度看,脉络学说不仅关注病症表象,更重视从深层次上关注和解决微循环障碍,改善内皮功能,从而缓解中血管、大血管以及心肌的问题。脉络学说强调从源头改善微循环,与心血管事件链的理念一脉相承。脉络学说研究领域包括胸痹、中风、心悸、心水等,涵盖了心脑血管病、心律失常、心衰等心血管事件链重大疾病,脉络学说指导有助于发挥中医整体系统理论特色,实现心血管事件链系统于预[1112]。

0.3 脉络学说指导下通络药物防治心血管事件链的理论基础

0.3.1 脉络学说核心营卫理论揭示心血管事件链传变与组方用药规律

基于脉络学说的核心内容——营卫理论,提出心血管事件链"凝"→"壅"→"塞"→"塞"→"不通"的传变规律,与高危因素聚集、动脉易损斑块、急性心梗,心律失常、慢性心衰等关键病理环节具有高度相关性。基于古今医案数据挖掘,揭示心血管事件链"凝"→"壅"→"塞"→"不通"传变特点:营卫"由络以通、交会生化"异常是始动因素并贯穿全程,引起津血输布代谢异常,湿、痰、瘀、水交互影响,形成"凝"→"壅"→"塞"→"东通"传变过程,构成心血管事件链由脉络功能障碍至结构损伤、由自身病变继发心肌组织损伤的连续病变过程。

依据数据挖掘确定的症候类型、核心病机及"调营卫津血"组方用药规律,确立了通络药物系统干预心血管事件链的用药方案:"健脾运津"治法及代表药物津力达颗粒用于干预心血管事件链的源头"凝"——高危因素聚集所致血液凝聚;"搜剔疏通"治法及代表药物通心络胶囊干预"壅"——冠脉易损斑块和"塞"——急性心肌梗死、脑梗死;"温清补通"治法及代表药物参松养心胶囊干预"不通"——心律失常;"气血水同治分消"治法及代表药物芪苈强心胶囊干预"不通"——慢性心衰。形成针对心血管事件链"凝"→"壅"→"塞"→"来",不通"中医传变规律核心病机的干预药物[133-15]。

0.3.2 脉络学说营卫理论指导提出心血管事件链系统干预策略

系统干预新策略的提出汲取了中医治未病思想,《黄帝内经》首提"治未病"概念,东汉张仲景发展《内经》 "治未病"思想提出重在"防传变"。基于中医"治未病、防传变"提出"治本病、防未病"——防上游因素、治当前病变、控下游传变的心血管事件链系统干预新观点,深入研究"调其营卫"治法及通络药物通过防上游因素、治当前病变、控下游传变,发挥防中寓治、治中寓防、防治结合的干预作用,对整体、连续、动态、全程实现心血管事件链系统干预具有重大理论指导价值[14]。

在过去三十多年的临床实践中,现代西医学提出的针对心血管疾病不同阶段的一、二、三级预防理念与措施在心血管疾病防治中发挥了重大作用,但由于心血管疾病整体性与复杂性的系统特征,也为单因素、单环节、单靶点干预带来了挑战。心血管高危因素多呈现个体聚集及多代谢异常的特点,显著增加动脉硬化发病风险[16];易损斑块残余炎症风险显著增加心血管事件,调脂联合抗感染治疗将为冠状动脉粥样硬化性心脏病(以下简称冠心病)高危患者提供更大获益[17-19];再灌注治疗时代急性心肌梗死心肌无再流/慢血流及缺血再灌注损伤严重影响预后,属国际医学界面临的挑战[20,21];相对于导管消融的快速进展,强调阻抑、对抗的抗心律失常药物治疗未有显著突破,持续性心房颤动导管消融术后复发率高达 30%,减少复发成为亟待解决国际难题[22-24];慢性心衰标准治疗 5 年死亡率仍近 50%,降低心血管死亡陷入国际瓶颈[25-26],也面临着百年来治疗理念的进一步更新问题。"心血管事件链"概念提示解决上述瓶颈难题需要向整体系统的思维转变与回归,这恰恰与传承中医学两千多年血脉理论基础上系统构建的脉络学说的理论特色相吻合,也为脉络学说指导下研发的通络药物解决上述瓶颈难题实现系统干预奠定了理论基础。

本文件的研究方法和技术路线见附录 A, 临床研究文献筛选标准和证据级别见附录 B。 本文件的发布机构提请注意,声明符合本文件时,可能涉及与通络药物相关的专利使用。 本文件的发布机构对于该专利的真实性、有效性和范围无任何立场。

该专利持有人已向本文件的发布机构承诺,他愿意同任何申请人在合理且无歧视的条款和条件下,就专利授权许可进行谈判。

该专利持有人的声明已在本文件的发布机构备案。相关信息可以通过以下联系方式获得: 专利持有人姓名:吴以岭;

地址:河北省石家庄市高新区天山大街 238 号。

请注意除上述专利外,本文件的某些内容仍可能涉及专利。本文件的发布机构不承担识 别专利的责任。

通络药物系统干预心血管事件链专家共识

1 范围

本文件描述了系列通络药物(包括津力达颗粒、通心络胶囊、参松养心胶囊、芪苈强心 胶囊)系统干预心血管事件链相关疾病(如糖尿病、脑卒中、冠心病、心律失常、心力衰竭 等)的作用机制和临床应用建议。

本文件适用于内分泌、心血管内科、神经内科及相关专业临床医生在治疗糖尿病、脑卒中、冠心病、心律失常、心力衰竭等疾病时应用。

2 规范性引用文件

下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

中华医学会心血管病学分会, 中华心血管病杂志编辑委员会. (2018). 稳定性冠心病诊断与治疗指南. 中华心血管病杂志, 46(9), 680-694.

中华医学会心血管病学分会,中华心血管病杂志编辑委员会. (2019). 非 ST 段抬高型急性冠状动脉综合征诊断和治疗指南. 中华心血管病杂志, 47(5), 347-363.

中华医学会心血管病学分会,中华心血管病杂志编辑委员会. (2022). 中国经皮冠状动脉介入治疗指南(2022). 中华心血管病杂志, 50(4), 315-374.

Arnett, D.K.,Blumenthal,R.S.,Albert, M.A.,Buroker,A.B.,Goldberger, Z. D.,Hahn, E. J., & Writing Committee Members. (2019). 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease:A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.Journal of the American College of Cardiology,74(10),e177-e232.

Byrne,R.A.,Rossello, X., Coughlan,J.J.,Barbato,E.,Berry, C., Chieffo, A.,& ESC Scientific Document Group.(2023).2023 ESC Guidelines for the management of acute coronary syndromes. European Heart Journal,44(38), 3720-3826.

Virani,S.S.,Newby,L.K.,Arnold,S.V.,Bittner,V.,Brewer,L. C., Demeter, S. H.,&Writing Committee Members. (2023). 2023 AHA/ACC/ACCP/ASPC/NLA/PCNA Guideline for the Management of Patients With Chronic Coronary Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. Journal of the American College of Cardiology , 82(9), 833-955.

霍晓川,高峰.急性缺血性卒中血管内治疗中国指南 2023[J].中国卒中杂志,2023,18(06):684-711.

王丹丹,董强,赵性泉.通心络胶囊在动脉粥样硬化性脑血管病临床应用的专家建议Ⅲ.中

国临床神经科学,2022,30(05):481-486.

美国心脏病学会/美国心脏协会临床实践指南联合委员会-《2022 年 AHA/ACC/HFSA 心力衰竭管理指南》2022AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines

欧洲心脏病学会-2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure.

中华医学会心血管病学分会,中国医师协会心血管内科医师分会,中国医师协会心力衰竭专业委员会,等.中国心力衰竭诊断和治疗指南2024.中华心血管病杂志,2024,52(03):235-275.D01:10.3760/cmaj.cn112148-20231101-00405.

3 术语和定义

下列术语和定义适用于本文件。

3.1

糖尿病

由于胰岛素分泌绝对或相对不足(胰岛素分泌缺陷),以及机体靶组织或靶器官对胰岛素敏感性降低(胰岛素作用缺陷)引起的以血糖水平升高,可伴有血脂异常等为特征的代谢性疾病。

注:糖尿病属于中医"消瘅"、"消渴病"等范畴。

[来源: SCM 18-2017, 3.3]

3. 2

冠状动脉粥样硬化性心脏病(冠心病)

由于冠状动脉硬化导致供养心脏的血液循环障碍,引起心肌缺血、缺氧而引起的心脏病。

3.3

缺血性脑卒中

各种脑血管病变所致脑部血液供应障碍,导致脑组织缺血、缺氧性坏死,而迅速出现相应神经功能缺损的一类临床综合征。

3.4

心房颤动(房颤)

临床最常见的心律失常之一,以心房电活动紊乱、心房失去有效收缩功能为特征,导致 心室率不规则并伴随多种并发症风险。

3.5

室性早搏

又名室性期前收缩,一种常见的心律失常,是指房室束分叉以下部位过早发生的,提前 使心肌除极的单个或成对的心搏。

3.6

心力衰竭(心衰)

由多种原因导致心脏结构和(或)功能的异常改变,使心室收缩和(或)舒张功能发生障碍,引起的一组复杂临床综合征。

[来源: SCM/TR 0008-2025, 3.1]

4 通络药物与心血管事件链

4.1 通络药物

中医脉络学说指导研发的通络药物包括津力达颗粒(以下简称津力达)、通心络胶囊(以下简称通心络)、参松养心胶囊(以下简称参松养心)、芪苈强心胶囊(以下简称芪苈强心),针对心血管事件链不同阶段进行干预。津力达"健脾运津"治法用于干预心血管事件链的源头"凝"——高危因素聚集所致血液凝聚;通心络以"搜剔疏通"治法干预心血管事件链环节"壅"——冠脉易损斑块和"塞"——急性心肌梗死、脑梗死;参松养心以"温清补通"治法干预"不通"——心律失常;芪苈强心以"气血水同治分消"造药组方规律干预"不通"——慢性心衰。形成针对心血管事件链"凝"→"壅"→"塞"→"塞"→"不通"中医传变规律核心病机的干预药物。[13-15]

4.2 通络药物与糖尿病及糖尿病前期

4.2.1 津力达"健脾运津"组方特色

基于"凝"——高危因素阶段证候特征和临床表现,确立"健脾运津"治法代表药物津力达作为干预药物。方中集中应用中医治脾诸方,人参补气健脾;黄精、麦冬益脾阴,苍术、佩兰燥脾湿,荔枝核畅脾气,苦参、黄连清脾热,仙灵脾温脾阳,葛根升脾气,辅以丹参通脉络,发挥"运脾津,通脉络"的功效,为其防治糖尿病实现全程干预提供了组方依据[12]。

4.2.2 津力达改善2型糖尿病的作用机制

4.2.2.1 改善胰岛素敏感性

抗氧化:宋光耀等研究提示[27-30],津力达上调沉默信息调节因子 3(sirtuin 3, SIRT3)表达,增强超氧化物歧化酶(superoxide dismutase, SOD)、谷胱甘肽过氧化物酶(Glutathione peroxidase, GSH-Px)等抗氧化酶活性,降低活性氧(reactive oxygen species, ROS)与丙二醛(malondialdehyde, MDA)水平,缓解氧化应激对胰岛素信号的干扰。

抗炎: 唐艳阁等研究显示[31], 津力达有效抑制核因子 κ B(nuclear factor kappa-B, NF- κ B) 信号通路活化,减少白介素(interleukin, IL) 1 β 、IL-6 等促炎因子的释放,减轻慢性低度炎症所致的胰岛素抵抗,从而改善胰岛素敏感性,达到调节血糖的作用。

缓解脂毒性: 宋光耀等研究发现[32], 津力达通过激活 AMP 依赖的蛋白激酶

(AMP-activated protein kinase, AMPK),促进乙酰辅酶 A 羧化酶(Acetyl CoA carboxylase, ACC) 磷酸化及激素敏感性脂肪酶(hormone-sensitive lipase, HSL)/脂肪甘油三酯脂肪酶(adipose triglyceride lipase, ATGL)表达,增强脂肪酸氧化效率;张会欣等研究提示[33],津力达下调脂肪酸转位酶(fatty acid translocase, FAT/CD36)表达,减少游离脂肪酸摄取,降低骨骼肌中甘油三酯和非酯化脂肪酸的沉积,缓解脂毒性,改善胰岛素敏感性。

4.2.2.2 保护胰岛β细胞

抗β细胞凋亡: 乐岭等研究表明[34,35],津力达通过抑制 Smad2/3 磷酸化,上调 B 淋巴细胞瘤-2(B-cell lymphoma-2, Bcl-2)等抗凋亡蛋白表达及下调促凋亡蛋白[如半胱天冬酶-3(caspase-3)、Bcl-2 相关的 X 蛋白(Bax)],并显著减轻高糖诱导的β细胞凋亡;同时改善胰岛微血管内皮细胞功能,优化胰岛β细胞生存环境,保护胰岛功能,从而达到保护胰岛β细胞的作用。

4.2.2.3 多通路协同调控糖脂代谢网络

高怀林等研究显示 [36-45],一方面津力达激活成纤维细胞生长因子(fibroblast growth factor 21, FGF21)/AMPK 信号通路,抑制肝脏二酰甘油酰基转移酶 1(diacylglycerol acyltransferase, DGAT1)表达,减少甘油三酯合成与堆积;同时上调解偶联蛋白(uncoupling protein 1,UCP1)、PR 结构域蛋白 16(PR domain containing 16, PRDM16)等棕色脂肪产热相关基因,促进脂肪酸氧化与能量消耗,改善肝脏及脂肪组织的代谢状态。另一方面,津力达上调过氧化物酶体增殖物激活受体γ共激活因子 1α(peroxisome proliferator-activated receptor-gamma coactivator-1alpha, PGC-1α)及其下游分子蛋白表达,促进线粒体生物合成与氧化磷酸化功能;通过抑制哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)、激活结节性硬化症复合体 1(tuberous sclerosis complex 1, TSC1)和 II 型微管相关蛋白 1 轻链 3(microtubule-associated protein 1 light chain 3, LC3-II),诱导细胞自噬,清除多余脂质,进一步改善代谢微环境。

在胰岛素信号转导方面,津力达协同激活磷脂酰肌醇 3 激酶(phosphatidylinositol 3-kinase, PI3K)/蛋白激酶 B (protein kinase B, Akt)通路,上调胰岛素受体(insulin receptor, IR)、胰岛素受体底物-1 (insulin receptor substrate-1, IRS-1) 和葡萄糖转运蛋白(glucose transporter type 4, GLUT4)的表达,增强细胞对胰岛素的响应和葡萄糖摄取能力。同时,其通过抑制 c-Jun 氨基末端激酶(c-Jun N-terminal kinase, JNK)/p38 丝裂原活化蛋白激酶(p38 mitogen-activated protein kinase, p38MAPK)等负调控信号的活化,避免信号通路受阻,从而全面提升胰岛素作用效率。

4. 2. 2. 4 改善微循环

丁英钧等研究表明[4647], 津力达联合通心络可显著改善高糖条件下肾脏微血管内皮细胞的活力, 减少细胞凋亡, 降低 ROS 水平; 可显著抑制磷酸化 Smad2/3 的表达, 并上调 Smad7的表达。此外, 联合干预可有效减少IV型胶原的生成, 缓解肾组织的纤维化程度; 显著下调p-Akt 与 p-mTOR 的表达水平, 抑制 mTOR 通路介导的血管内皮生长因子(vascular endothelial growth factor, VEGF)过度表达, 改善肾脏组织的血管异常增殖状态; 抑制

Akt/mTOR 通路亦有助于调节机体组织的代谢应激,减轻糖尿病相关代谢紊乱的肾脏损害。

4.2.3 津力达在2型糖尿病及糖尿病前期中的循证证据

4.2.3.1糖尿病前期

FOCUS 研究 [48] 为多中心、随机、双盲、安慰剂对照临床试验,共纳入 889 例糖耐量异常合并多重代谢异常的个体,随机给予津力达 (9g/次,每日三次[ter in die, TID],口服)或安慰剂治疗,主要结局为糖尿病发生率(通过连续 2 次口服葡萄糖耐量试验确诊)。结果显示:①中位观察 2.2 年后,津力达组糖尿病发生风险显著低于安慰剂组(风险比[Hazard Ratio, HR]=0.59, 95%置信区间[confidence interval, CI]: 0.46-0.74; P<0.001)。②在代谢指标方面,与安慰剂组相比,津力达组腰围减小 0.95 cm(95%CI: 0.36-1.55)、空腹血糖降低 3.8 mg/dL(95%CI: 2.2-5.6)、餐后 2 小时血糖降低 9.2 mg/dL(95%CI: 5.4-13.0)、糖化血红蛋白(glycated hemoglobin, HbA1c)降低 0.20%(95%CI: 0.13%-0.27%)、胰岛素抵抗指数(homeostatic model assessment of insulin resistance,HOMA-IR)改善 0.47(95%CI: 0.12-0.83)。③在血脂方面,与安慰剂组相比,津力达组总胆固醇、低密度脂蛋白胆固醇、甘油三酯水平均显著下降,高密度脂蛋白胆固醇(high density lipoprotein cholesterol,HDL-C)水平有所上升。④随访 24个月后,津力达组踝肱指数与腰围较安慰剂组均显著改善。

4.2.3.2 新诊断2型糖尿病

一项为期 16 周的双盲随机对照临床试验[49],评估津力达对新诊断 2 型糖尿病(type 2 diabetes mellitus, T2DM)患者血糖波动的影响(包括单用及联合二甲双胍治疗)。入组患者随机分为四组:对照组、津力达组、二甲双胍组和津力达联合二甲双胍治疗组。采用回顾性持续葡萄糖监测(continuous glucose monitoring, CGM)系统进行连续 3 天的皮下组织间液葡萄糖监测,并在试验前后评估 HbA1c、中医证候积分及 CGM 参数(包括血糖变异系数、血糖标准差和 3.9-10.0 mmol/L 目标范围内时间)。最终 138 名受试者完成全程研究。结果显示:与干预前相比,四组患者的空腹血糖、餐后 2 小时血糖、HbA1c 和中医证候积分均有所下降,其中联合治疗组降幅最为显著。在 CGM 参数方面,津力达组和二甲双胍组的目标范围内时间 较基线显著改善(津力达组:78.68±26.15 vs 55.47±33.29;二甲双胍组:87.29±12.21 vs 75.44±25.42; P<0.01)。值得注意的是,仅津力达组干预后的血糖标准差显著降低(1.57±0.61 vs 1.96±0.95; P<0.01)。研究表明,津力达可有效改善新诊断 T2DM 患者的血糖控制及血糖波动性。

4.2.3.3 血糖控制不佳的2型糖尿病

一项随机、双盲、安慰剂对照、多中心临床研究[50],纳入 186 例 T2DM 患者。受试者被随机分配接受津力达(9g/次,TID,口服)或安慰剂治疗,连续 12 周。两组均继续服用原有剂量二甲双胍且剂量保持不变。在 12 周治疗期间,评估 HbA1c、空腹血糖、餐后 2 小时血糖、体重和体重指数(body mass index, BMI)变化,同时计算 HOMA-IR 和β细胞功能指数(homeostasis model assessment-β, HOMA-β)。结果:治疗 12 周后,津力达组 HbA1c 较基线降低 $0.92\pm1.09\%$,安慰剂组降低 $0.53\pm0.94\%$ (津力达组 95%CI: 0.69-1.14;安慰剂组

95%CI: 0.34-0.72)。两组间 HbA1c 降幅差异具有显著统计学意义(P<0.01)。津力达和安慰剂组的空腹血糖和餐后 2 小时血糖均较基线下降,且两组间差异均具有显著统计学意义(均 P<0.01)。津力达组还显示出β细胞功能改善,HOMA-β指数显著增加(P<0.05)。体重和 BMI 变化无统计学意义。

4.2.3.42型糖尿病患者的胰岛素抵抗

一项纳入 15 项随机对照临床研究的荟萃分析 $^{[51]}$ 显示,津力达联合其他降糖药物治疗 2 型糖尿病持续治疗至少 12 周。治疗组和对照组相比,治疗组能显著降低 2 型糖尿病患者的 HbA1c(P<0.001)、空腹血糖(P<0.001)、餐后 2 小时血糖(P<0.001);同时显示治疗组更具有调节 HOMA-IR 和 HOMA-β的能力。从而增加胰岛素敏感性,改善胰岛素抵抗。

表 1 津力达颗粒治疗糖尿病及糖尿病前期的建议

建议	推荐类别	证据等级
建议对糖耐量异常患者,在生活方式干预基础上加用津力达,降低新发糖尿病发生风险,同时改善糖脂代谢(包括降低空腹及餐后血糖、HbA1c、升高 HDL-C 水平、降低 TG 水平),并可以减小腰围和 BMI,降低颈动脉内膜中层厚度	IIa	A
建议对新诊断的 T2DM 患者,可单用津力达或与二甲双胍联合,以改善患者血糖波动,增加血糖目标范围内时间	IIa	В
对二甲双胍单药或其他口服降糖药治疗不达标的 T2DM 患者,建议加用津力达以进一步下降 HbA1c,同时改善患者的空腹及餐后血糖	IIa	A
建议对 T2DM 患者,津力达可单用或者联合其他降糖药物,以改善 2 型糖尿病患者的体重,增加胰岛素敏感性,改善胰岛素抵抗	IIa	A

注: HbA1c, 糖化血红蛋白; HDL-C, 高密度脂蛋白胆固醇; TG, 甘油三酯; BMI, 身体质量指数; T2DM, 2型糖尿病。

4.2.4 津力达的安全性

根据中国国家药品不良反应监测系统^[52],截至 2025 年 3 月,收到津力达药品不良反应报告共计 848 件,报告率约 2.61‱,其不良反应发生率属于罕见级别。不良反应表现主要为腹泻、恶心、呕吐、腹胀、皮疹等。

4.3 通络药物与缺血性心脑血管疾病

4.3.1 通心络"搜剔疏通"的组方特色

基于"壅"——冠状动脉易损斑块和"塞"——急性心肌梗死和脑梗死阶段证候特征和临床表现,确立"搜剔疏通"治法药物通心络作为干预药物。针对该阶段共性病机络气虚滞,通心络以人参、降香补虚通滞、疏畅络气,针对脉络瘀阻以水蛭、土鳖虫剔除络瘀,针对脉络细急以全蝎、蜈蚣、蝉蜕搜风通络,体现了"搜剔疏通"的组方用药特色,为其防治冠心病心绞痛、急性心肌梗死和脑梗死实现全程干预提供了组方依据[12]。

4.3.2 通心络防治缺血性心脑血管疾病的作用机制

4.3.2.1 保护内皮改善微循环

通心络通过多靶点协同作用实现内皮保护与微循环改善。Wu 等多项研究表明[53,54],通心络通过激活环磷酸腺苷(cyclic adenosine monophosphate, cAMP)/蛋白激酶 A(protein kinase A, PKA)通路促进内皮型一氧化氮合酶(endothelial nitric oxide synthase, eNOS)在Ser1179 和 Ser635 位点磷酸化,增强 eNOS 活性,进而上调血管内皮钙粘蛋白(vascular endothelial cadherin, VE-cadherin)和β连环蛋白表达,有效保护心肌微血管内皮结构。Chen 等[55]在缺血再灌注大鼠模型中发现,通心络通过外泌体介导的长链非编码 RNA-重编码调控因子(long intergenic non-protein coding RNA, regulator of reprogramming, Linc-ROR)/p70 核糖体蛋白 S6 激酶(p70 ribosomal protein S6 kinase, p70S6K)/eNOS 通路减轻内皮细胞损伤,改善心脏微循环,减少心肌梗死面积。Li 等人的基础研究证实[56,57],通心络可显著降低髓过氧化物酶活性及炎症因子水平,降低微血管渗透性和心肌、线粒体水肿,从而改善冠状动脉微循环灌注和促进左心室功能恢复。在脑缺血模型中,通心络还可促进微血管新生、降低血脑屏障通透性[58,59],增加缺血区血流量[60],展现多维度改善微循环障碍的作用特点。

4.3.2.2 稳定斑块、抗动脉粥样硬化

Chen 等研究表明[58,61-63],通心络能显著降低新西兰兔动脉粥样硬化模型的血脂及单核细胞趋化蛋白-1(monocyte chemoattractant protein-1, MCP-1)、超敏 C 反应蛋白(hypersensitive C-reactive protein, hs-CRP)、基质金属蛋白酶1(matrix metalloproteinase-1, MMP-1)等炎症因子水平,同时通过增加斑块纤维帽厚度提升斑块稳定性。在分子调控层面,通心络通过非受体酪氨酸激酶(bone marrow X-linked kinase, Bmx)/NF-кВ/MAPK 通路抑制斑块内炎性血管生成,调节斑块成分构成,显著降低斑块易损指数[64]。Qi 等研究[65]发现通心络在调节动脉硬化粥样斑块时调节肠道菌群,具体表现为增加indistinctus 菌群丰度及反式阿魏酸含量,进而抑制巨噬细胞核苷酸结合寡聚化结构域样受体蛋白3(nucleotide-binding oligomerization domain-like receptor protein 3, NLRP3)炎症通路。Zhang 等临床研究[66]显示常规抗血小板治疗基础上加用通心络可进一步降低血小板高反应性和 hs-CRP 水平来预防动脉粥样硬化。此外通心络可激活过氧化物酶体增殖物激活受体γ(peroxisome proliferative activated receptor gamma, PPARγ)通路抑制氧化低密度脂蛋白诱导的树突状细胞成熟及促炎因子分泌,以调控免疫炎症反应延缓动脉粥样硬化进展[67]。

4.3.2.3 保护心肌细胞,促进心肌血管生成

凋亡和自噬是维持心肌细胞存活和死亡的重要途径。Li 等研究发现[50],通心络预处理可抑制缺血再灌注小型猪模型的心肌凋亡蛋白表达以减少心肌细胞凋亡,此外,通心络提前1小时预处理可上调 Ser1179 和 Ser635 的磷酸化 eNOS 表达以减少心肌无复流和缺血再灌注损伤,PKA 通道部分介导心肌保护效应。在急性心肌梗死大鼠模型中,通心络治疗可减轻梗死面积、促进梗死周围区血管生成,发挥心脏保护作用; 机制上,通心络激活 AMPK 信号通路,增加心肌自噬蛋白 LC3 表达、降低凋亡蛋白 Bax 水平,促进自噬并抑制心肌细胞凋亡,从而保护心肌细胞、促进心肌修复[60]。Bai 等[60]在心肌梗死小鼠模型中证实,通心络

通过增加 Akt 及细胞外调节蛋白激酶 (extracellular regulated protein kinases, ERK) 磷酸化, 促进 VEGF 及 p-eNOS 蛋白表达来促进心肌新生血管生成,从而改善梗死后心脏功能及心室重塑。

4.3.2.4 解除血管痉挛

通心络通过多靶点调控发挥解除血管痉挛效应,作用机制涉及关键信号通路的调控。Guan 等研究表明[70,71],通心络可显著改善颈动脉血管外膜慢性损伤模型大鼠的血管收缩功能,降低管腔狭窄程度(8.2%±1.0% vs 20.1%±3.3%)、改善管腔横截面积及血流;通过抑制 RAS 同源基因家族成员 A(RAS homologous gene family member A, RhoA)/Rho 激酶通路,显著下调 Rho 激酶 mRNA 及磷酸化肌球蛋白磷酸酶靶亚基 1(myosin phosphatase target subunit 1, MYPT1)蛋白表达,从而减弱血管对 5-羟色胺收缩反应的敏感性,其效应机制与尼可地尔相似。进一步研究发现,通心络通过激活 ERK1/2-神经型一氧化氮合酶(neuronal nitric oxide synthase, nNOS)信号轴,促进 ERK1/2 磷酸化介导的 nNOS 表达,改善血管收缩、解除血管痉挛、降低血管对收缩因子的超敏反应,发挥抗血管痉挛的保护作用[72]。

4.3.2.5 促进神经功能恢复

针对脑缺血损伤,通心络可增强和延长缺血区脑源性神经营养因子(brain-derived neurotrophic facto, BDNF)和 VEGF 高表达,发挥对脑缺血的神经保护作用[73,74]。在大脑中动脉闭塞型大鼠模型实验中,给予通心络治疗后,在电镜下可观察到缺血后脑皮质微血管超微结构显著改善[75]。通心络还可能通过激活丝裂原活化的细胞外信号调节激酶

(mitogen-activated extracellular signal-regulated kinase, MEK1/2)/ERK/p90 核糖体 S6 激酶 (p90 ribosomal S6 kinase, p90RSK)、PI3K/Akt 或抑制低密度脂蛋白受体相关蛋白 1 (low density lipoprotein receptor related protein 1, LRP1)等途径,改善缺血/再灌注损伤、神经功能损伤和血脑屏障破坏,促进运动神经纤维的轴突重建和突触形成,改善缺血部位微小血管血液循环及新生血管形成,从而改善神经功能[59,76-82]。

4.3.3 通心络在缺血性心脑血管疾病中的循证证据

4.3.3.1 冠心病

4.3.3.1.1 稳定型心绞痛

Feng 等一项纳入了 26 篇随机对照试验(randomized controlled trial, RCT)的 meta 分析 [83]显示,稳定型心绞痛患者在冠心病二级预防的基础上,联合应用通心络 4 周以上,可使心绞痛发作频率降低 0.91 次/周、心绞痛持续时间缩短 1.71 min/次,硝酸甘油使用量每周减少 2.22 mg、6 分钟步行试验距离可增加 27.86 m。

4.3.3.1.2 不稳定型心绞痛

Meta 分析^[84-98]显示,不稳定型心绞痛患者在冠心病二级预防基础上联合通心络应用 2 周以上,可使心绞痛发作减少 2.32 次/周、心绞痛持续时间缩短 1.74 min/次、心电图 ST 段 压低恢复率提高 27%。持续服用 1~6 个月,心肌梗死发生风险下降 65%。

4.3.3.1.3 变异型心绞痛

随机对照研究[99,100]提示变异型心绞痛患者在西医常规药物治疗基础上联合应用通心络,可有效降低心绞痛持续时间(*P*<0.05),改善心绞痛症状。

4.3.3.1.4 非阻塞性冠脉缺血相关的冠脉微血管疾病

Meta 分析 [101-103] 显示,非阻塞性冠脉缺血相关的冠脉微血管疾病(coronary microvascular disease, CMVD)患者常规治疗联合通心络应用 1 个月后,可使心绞痛发作频率减少 3.74 次/周、运动心电图 ST 段压低时间延迟 64.51s; 服用 3 月后,靶血管校正 TIMI(thrombolysis in myocardial infarction)帧数降低 11.63 帧。

4.3.3.1.5 ST 段抬高型心肌梗死

ENLEAT 研究[117]共纳入 219 例 ST 段抬高型心肌梗死(ST-segment elevation myocardial infarction, STEMI) 患者,急诊 PCI 术前在常规治疗的基础上分别给予通心络或安慰剂负荷剂量 2.08 g(8 粒),术后按照每次 4 粒,每天 3 次服用,疗程 6 月。分别在住院时和冠状动脉球囊扩张后 1、2、6、12、24h 通过心电图记录 ST 段抬高幅度,以评估心肌无复流。结果显示,通心络给药后第 6 小时,ST 段回落幅度显著优于对照组;给药后第 24h,通心络组显著降低无复流发生率达 36.6%(34.3% vs 54.1%, P=0.0031);明显降低 ST 段抬高幅度、加速 ST 段回落幅度;改善心肌血流灌注,缩小心肌梗死面积;减少节段性室壁运动异常,改善再灌注后心功能。

CTS-AMI 研究[118]共纳入 3797 例 STEMI 患者,在双联抗血小板治疗基础上,随机给予通心络或安慰剂负荷剂量 2.08 g(8 粒)治疗,随后两组分别在二级预防治疗基础上每天 3次,每次 4 粒服用,治疗 12 个月。结果显示:①通心络组的 30 天主要不良心脑血管事件(major adverse cardiovascular and cerebrovascular events, MACCE)(包括心源性死亡、心肌再梗死、急诊血运重建和脑卒中)风险较安慰剂组降低 36%(3.39% vs 5.24%,相对危险度[Risk Ratio, RR]=0.64, P=0.006),心源性死亡风险下降 30%、心肌再梗死风险下降 65%、恶性心律失常发生率降低 23%;②患者持续服用通心络 1 年,MACCE 风险较安慰剂组下降 36%(5.3% vs 8.3%,RR=0.64, P<0.001),心源性死亡风险降低 27%、心肌再梗死风险降低 74%、卒中风险降低 56%、因心衰再住院风险降低 52%;③通心络组在给药第 24h 的 ST 段回落幅度显著优于安慰剂组。

Chen 等一项纳入了 10 篇 RCT 的 meta 分析 [119] 研究提示,STEMI 患者在冠心病二级预防基础上联合应用通心络,MACCE 风险可降低 39%(P<0.001)。

4.3.3.2 颈动脉硬化

CAPITAL 研究 [120] 共纳入 1212 例非钙化颈动脉斑块患者,分别接受通心络或安慰剂治疗 24 个月(每次 6 粒、每日 2 次)。结果显示,通心络显著降低平均颈动脉内中膜增厚年化 变化值(-0.00095mm vs 0.01312mm, P<0.001)、缩小斑块体积,改善血管重构指数,减少主要心血管事件发生率。

4.3.3.3 缺血性脑卒中

TISS 研究[121]是一项多中心、随机、双盲、安慰剂对照临床试验,共纳入 2007 名急性缺血性脑卒中(acute ischemic stroke, AIS)患者,在标准治疗基础上,随机给予通心络或安慰剂(TID,每次 4 粒),治疗 90 天。结果显示: ①与安慰剂相比,通心络显著提高了AIS 患者 90 天独立生活(改良 Rankin 量表[modified Rankin Scale, mRS]评分 \leq 1 分)的比例(65.8% vs 59.1%,比值比[Odds Ratio, OR]=1.33, P=0.002);②通心络组 mRS 评分 0~2 分、美国国立卫生院卒中量表(National Institute of Health stroke scale, NIHSS)评分为 0~1 分或降低 \geq 4 分、日常生活活动能力(barthel index, BI)评分 \geq 85 的患者比例均高于安慰剂组。预先设定的亚组分析表明,年龄<60 岁、症状发作 48h 内、合并糖尿病、大动脉粥样硬化型的卒中患者,更有可能从通心络治疗中受益。通心络治疗发病 72h 内 AIS 患者更有可能获得良好的功能预后,安全性良好。

鄢波等研究[122]将 360 例急性/亚急性期缺血性脑卒中患者随机分为两组,通心络组在常规治疗基础上加用通心络,治疗 14 天后,虽然两组患者的 BI 评分和神经功能缺损评分在 28 天无统计学差异,但在治疗 3、6 和 12 个月时,差异具有统计学差异。治疗 12 个月后,治疗组的心脑血管事件复发率低于对照组。

针对卒中恢复期患者,吴以岭等^[123]通过评价超微粉碎工艺的通心络与普通粉碎工艺的通心络,发现使用超微粉碎工艺的通心络对于气虚血瘀络阻型中风病患者疗效确切,与普通粉碎工艺的通心络疗效相当,且服用安全。

周红青等[124]对 39 项通心络应用于脑卒中相关 RCT 研究进行分析发现,通心络组神经功能评分改善显著优于对照组;治疗结束时通心络组的有效率显著高于对照组。丛伶男等[125]对 14 项通心络用于脑卒中相关 RCT 进行分析发现,在常规疗法基础上联合使用通心络,在改善神经功能缺损包括降低缺损程度评分及提高神经功能改善率、提高生活能力、降低 NIHSS 评分上,均优于单用常规疗法;不良事件发生率,组间比较差异无统计学意义。

表 2 通心络胶囊治疗缺血性心脑血管疾病的建议

建议	推荐类别	证据等级
在冠心病二级预防的基础上联合通心络,有助于进一步改善稳定型心绞痛患者心 绞痛症状,提高运动耐量	I	A
在冠心病二级预防的基础上联合通心络,有助于进一步降低不稳定型心绞痛患者 心肌梗死发生率,改善心绞痛症状	I	A
在冠心病二级预防的基础上联合通心络,有助于进一步减少 PCI 术后患者的主要心血管事件,降低 PCI 术后支架内再狭窄率	I	A
在冠心病二级预防的基础上联合通心络,有助于进一步减少 STEMI 患者的主要心血管事件风险	I	A
在常规治疗的基础上联合通心络,有助于进一步降低非阻塞性冠脉缺血相关 CMVD 患者的心绞痛发作频率,改善冠脉血流,提高运动耐量	IIa	A
在西医常规治疗基础上联合通心络,有助于进一步改善变异型心绞痛患者心绞痛 症状	IIa	В
急诊 PCI 术前,在常规治疗的基础上给予通心络负荷剂量(8粒),以后 4粒 TID 持续 1 年方案,有助于降低 STEMI 患者 PCI 术后 24 小时的无复流发生率、30-	IIa	A

天和1-年的心脑血管事件(MACCE)发生率和病死率 在常规治疗的基础上联合通心络,可以延缓颈动脉内中膜增厚,缩小颈动脉斑块 Ha Α 患者的斑块体积 对于急性缺血性脑卒中患者,在发病72小时内,建议在常规治疗基础上,加用 通心络,以改善患者的神经功能缺损症状,有助于改善患者90天神经功能缺损 IIa В 程度和日常生活活动能力,提高90天良好功能结局的比例 对于轻型卒中(如 NIHSS 评分 4-7分)、合并糖尿病、大动脉粥样硬化型脑卒 中或在急性期48小时内开始用药的患者,通心络对于改善90天功能结局的治疗 Ha R 效果可能更为显著,可优先考虑使用 对于缺血性脑卒中患者,在常规治疗的基础上联合通心络,可能降低长期脑血管 IIa B 针对卒中恢复期患者,与普通粉碎工艺的通心络相比,使用超微粉碎工艺的通心 络对于气虚血瘀络阻型中风病患者有效且安全

注: PCI, 经皮冠状动脉介入术; STEMI, ST 段抬高型心肌梗死; CMVD, 冠状动脉微血管疾病。

4.3.4 通心络的安全性

根据中国国家药品不良反应监测系统^[52],截至 2025 年 3 月,收到通心络药品不良反应报告共计 9598 件,报告率约 0.82‱,其不良反应发生率属于非常罕见级别。不良反应表现主要为恶心、腹部不适、腹痛、呕吐、腹胀、头晕等。如服用通心络引起恶心、腹部不适、腹痛、呕吐、腹胀及腹泻等消化道不良反应,减少用药剂量或改为饭后服用可减轻消化道不良反应。

CTS-AMI 研究[118]显示,通心络不增加出血风险,严重不良事件发生率与安慰剂组相似 (2.2% vs 2.8%, P=0.25)。TISS 研究[121]显示,通心络和安慰剂组不良事件 (38.6% vs 38.4%, P=0.95) 和严重不良事件 (2.2% vs 1.9%, P=0.64) 发生率相似。出血性疾患及妇女经期禁用。

4.4 通络药物与心律失常

4.4.1 参松养心"温清补通"的组方特色

基于"不通"一心律失常阶段证候特征和临床表现,确立"温清补通"治法代表药物参松养心作为干预药物。方中人参、酸枣仁、山茱萸、麦冬等益气养阴安神,黄连、甘松、丹参、土鳖虫等清火理气通络,发挥"整合调节、快慢兼治"的功效,为其防治心律失常实现全程干预提供了组方依据[12]。

4.4.2 参松养心防治心律失常的作用机制

4.4.2.1 多离子通道阻滞作用

电压门控钠通道(I_{Na})形成快反应动作电位 0 相。Li 等研究发现 $I^{126,127}$,在豚鼠心室肌细胞中,参松养心抑制 I_{Na} 峰值电流,通过阻滞 Na^+ 通道发挥 I 类抗心律失常作用。

K+通道对维持静息膜电位及动作电位复极至关重要。瞬时外向钾电流(I_{to})在心外膜表达较强,参松养心显著抑制心外膜 I_{to},降低复极离散度,延长心房和心室肌动作电位时程(action potential durations, APD)和有效不应期(effective refractory period, ERP),降低

心房颤动(以下简称房颤)或折返、尖端扭转型室速的发生 $^{[128,129]}$ 。参松养心主要抑制延迟整流钾电流(I_k)中的缓慢激活成分(I_{ks}),减少快速性心律失常发生 $^{[126,130]}$ 。参松养心可阻滞内向整流钾电流(I_{kl})的内向成分、略增大外向成分,抑制早期后除极和触发机制引起的心律失常 $^{[126,130]}$ 。参松养心对 K^+ 的多通道阻滞作用与 III 类抗心律失常药物胺碘酮相似。

Zhao 等人在心肌缺血动物模型中发现,参松养心抑制 I_{to} 和 I_{k1} ,延长心室肌细胞 APD 和 ERP,但不触发细胞内 Ca^{2+} 超载,抑制延迟后除极 $[^{121}]$ 。参松养心体外可降低心室肌细胞 Ca^{2+} 超载,并抑制 L 型钙通道(I_{Ca-L}),使电流密度-电压曲线上移,延长 I_{Ca-L} 失活后恢复时间 $[^{126,131,132}]$ 。参松养心通过阻滞 I_{Ca-L} 通道并减少 Ca^{2+} 超载发挥 IV 类抗心律失常和缺血心肌保护的双重作用。

Sun 等研究表明^[133],在转染超极化激活阳离子通道(hHCN4)的人胚肾 293(KEF293)细胞中,参松养心干粉溶液可逆性抑制 hHCN4,且不改变通道激活动力学参数。抑制 hHCN4起搏电流可能是参松养心治疗室性早搏的电生理机制之一。此外,参松养心对 Kv1.4 钾通道电流也有一定的阻滞作用^[134]。

4.4.2.2 改善心肌电生理重构

电生理重构主要包括心肌细胞传导性和自律性的改变、膜离子通道改变、间隙连接异常等。在多种心律失常易感的动物模型中,参松养心可改善心房和心室肌细胞 APD 及 ERP,减小心房心室间 APD 离散程度,降低心肌细胞自律性,降低房颤和室性心律失常易感性 [135,136]。间隙连接负责心肌细胞间动作电位的快速传递,参松养心可增加糖尿病大鼠心房肌细胞间隙连接蛋白(Connexin, Cx)40表达,通过 Toll 样受体 4(toll-like receptor 4, TLR4)/髓样分化因子 88(Myeloid differentiation primary response gene 88, MyD88)/钙-钙调蛋白依赖性蛋白激酶 II(Calcium-calmodulin dependent protein kinase II, CaMKII)CaMKII 信号通路增加代谢综合征大鼠心室肌细胞 Cx43蛋白表达,改善间隙连接重塑 [137,138]。参松养心可上调心肌离子通道蛋白 Kv4.2、Kv4.3 及 Cav1.2表达,改善离子通道重塑 [138];降低心肌细胞间心电传导异质性,改善电信号传导方向和时间 [139]。

4.4.2.3 改善心肌结构重构、抑制纤维化

Liu 等研究提示 [140],参松养心可减轻血管紧张素 II(Angiotensin, Ang II)诱导的心肌细胞肥大,改善心肌细胞形态结构,抑制心肌细胞凋亡。在心肌梗死大鼠及家兔模型中,参松养心提高左室射血分数(left ventricular ejection fraction, LVEF)及短轴缩短率(fractional shortening, FS),增强心肌收缩力,提高心功能;降低 Collagen I/III 蛋白水平,减少胶原蛋白沉积;下调转化生长因子-β1(transforming growth factor beta-1, TGF-β1)、MMP-2、MMP-9、基质金属蛋白酶抑制剂 1(tissue inhibitor of metal protease 1, TIMP-1)等纤维化基因及蛋白表达,抑制心脏成纤维细胞向肌成纤维分化,延缓心房及心室纤维化进程[139,141]。Shen 等研究发现[142],参松养心通过抑制 TGF-β1/Smad 通路减轻糖尿病心肌病小鼠的心脏纤维化。

4.4.2.4 心脏自主神经功能的双向调节

Zhao 等在犬房颤模型中发现[143],参松养心升高迷走神经高频成分(high-frequency,

HF)、降低交感神经低频成分(low-frequency, LF)及 LF/HF,抑制心房交感神经过度支配、增加迷走神经功能,调节自主神经活动平衡,减慢快心率。参松养心通过调节交感神经功能,抑制全身或局部肾素 - 血管紧张素 - 醛固酮系统(renin-angiotensin-aldosterone system, RAAS)活性,降低 Ang II 水平及生物活性,改善心房基质、减轻纤维化,降低房颤风险并维持窦性心律 [128]。参松养心还增加乙酰胆碱和 α 7 烟碱型乙酰胆碱受体(α 7 nicotinic acetylcholine receptor, α 7nAChR)表达,从而增强胆碱能抗炎途径,降低肿瘤坏死因子 α (tumor necrosis factor- α ,TNF- α)、IL-6 等炎性因子水平 [143]。参松养心通过调节自主神经活动平衡、抑制交感神经功能、增加迷走神经功能、增强胆碱能抗炎途径,发挥抗心律失常作用。

在缓慢性心律失常微型猪模型中,参松养心可提高心率,促进窦房结及房室结电信号传播,这种作用不受自主神经系统抑制的影响; Feng 等通过体外实验发现,参松养心均匀地缩短 APD 及 ERP, 但未致心律失常[144]。

4.4.2.5 抑制炎症、改善代谢及心肌微循环

Zhang 等研究表明^[145],参松养心降低 db/db 小鼠细胞间黏附分子(intercellular cell adhesion molecule-1, ICAM-1)、血管细胞黏附分子(vascular cell adhesion molecule-1, VACM-1)等炎症蛋白表达,减少内皮素-1(endothelin-1, ET-1)、TNF-α、IL-6、MCP-1等炎性因子水平;抑制 M1 型巨噬细胞的浸润极化,减轻心肌炎症反应。参松养心上调铁转运蛋白,抑制心肌细胞铁过载引起的氧化应激及 ROS 水平^[140];增加心肌细胞线粒体密度、激活 AMPK、上调 PGC-1α改善细胞线粒体能量代谢;增加肉碱棕榈酰转移酶-1(carnitine palmitoyltransferase I, CPT-1)和 GLUT-4 表达促进脂肪酸和葡萄糖氧化^[140]。在多种心律失常易感动物模型中,参松养心改善心脏微血管内皮细胞结构,促进心肌内皮细胞间紧密连接形成增加微血管密度;通过上调 VEGF/eNOS 途径提高一氧化氮(nitric oxide, NO)水平,调节缩血管因子与扩血管因子间的平衡,保护微血管内皮细胞,改善心肌微循环^[145,147]。

4.4.3 参松养心在心律失常中的循证证据

4.4.3.1 室性早搏(室性期前收缩)

在一项多中心、随机、双盲对照临床试验[148]中,共纳入 859 例频发室性早搏患者。其中 188 例受试者未合并器质性心脏病(organic heart disease, OHD),给予参松养心或安慰剂(TID,每次 4 粒)治疗;671 例受试者合并 OHD,接受参松养心(TID,每次 4 粒)或美西律片(TID,每次 150mg)治疗,疗程均为 8 周。结果显示,非 OHD 室性早搏试验组,参松养心和安慰剂均减少室性早搏次数,参松养心总有效率显著优于安慰剂(74.2% vs 28.9%, P<0.001);在 OHD 室性早搏试验组,参松养心和美西律均减少室性早搏次数,参松养心总有效率显著优于美西律(65.8% vs 50.7%, P<0.001)。此外,参松养心还显著改善室性早搏相关的心慌、胸闷等临床症状。

SS-HFVPT 研究[149]为一项多中心、随机、双盲、安慰剂对照临床试验,纳入 465 例心衰合并频发室性早搏患者,在西药标化治疗基础上联合参松养心或安慰剂(TID,每次 4 粒)治疗 12 周。结果显示,参松养心组 24h 室性早搏总次数较安慰剂组明显减少(-2145±2848

vs -841±3411, *P*<0.05),提高 LVEF、降低血浆氨基末端 B 型利钠肽前体(N-terminal pro-brain natriuretic peptide, NT-proBNP) 水平。

一项针对室性早搏伴窦性心动过缓的多中心、随机、双盲、安慰剂平行对照临床研究[150] 纳入 333 名患者,166 人接受参松养心治疗(TID,每次 4 粒),167 人接受安慰剂治疗,疗程 8 周。结果显示,参松养心显著降低了 24h 室性早搏次数,早搏数下降率优于安慰剂组(68.2% vs 32.2%, P<0.001);同时,参松养心使平均心室率提高 10.9%,显著优于安慰剂组 4.7% (P<0.001)。

Meta 分析 [148-162] 显示,室性早搏患者服用参松养心 4 周以上,室性早搏次数平均降低 867.41 次/24h(P<0.001),临床总有效率及临床症状改善优于对照组(P<0.001)。

一项随机、双盲、多中心安慰剂对照的研究 [163],对参松养心治疗心动过缓的安全性和有效性进行了评估。共纳入心动过缓患有 [115] 例,对照组 [104] 例,接受参松养心治疗 [4] 周([110] 每次 [4] 粒)。结果发现,参松养心治疗的患者的平均心率、最快心率及最慢心率均显著上升,症状评分显著改善(均 [163] [163] 。

4.4.3.2 阵发性房颤

一项多中心、随机、双盲、双模拟、对照临床试验[164]共纳入 349 例症状性阵发房颤患者,分别给予参松养心(TID,每次 4 粒)+普罗帕酮模拟剂(TID,每次 150mg)、普罗帕酮+参松养心模拟剂、参松养心+普罗帕酮,疗程 8 周。结果显示:房颤总体疗效三组比较差异无统计学意义(62.3% vs 58.6% vs 58.5%, P>0.05);单独应用参松养心或参松养心与普罗帕酮联合应用,均可有效降低房颤平均发作频率、缩短房颤发作持续时间(均 P<0.01)。

Meta 分析 [165-172] 结果显示,症状性阵发房颤患者,在抗心律失常药物(antiarrhythmic drugs, AAD)基础上联合参松养心服用 2 月以上,房颤平均发作频率降低 2.23 次/周 (P=0.002)、房颤发作持续时间缩短 1.64h/次(P=0.02)、提高窦律维持有效率(P=0.039)。

一项 RCT 显示[173], 阵发性房颤患者行导管消融术后, 参松养心联合决奈达隆应用, 可降低术后早期复发及房性快速性心律失常发生率(6.6% vs 20%, *P*=0.03)。

4.4.3.3 持续性房颤导管消融术后

SS-AFRF 研究为多中心、随机、双盲、安慰剂对照临床试验[174],共纳入 920 例首次行导管消融术的持续性房颤患者。所有患者在导管消融术空白期后尽量停用 AAD 基础上,分别给予参松养心或安慰剂(TID,每次 4 粒),随访观察时间 1 年,主要终点为在空白期后,持续≥30s 的复发性房性快速性心律失常的发生率。1 年随访结果显示,与安慰剂组相比,参松养心显著降低持续性房颤患者消融术后房颤复发率(14.5% vs 22.3%, P=0.001),降低复发风险 40%(HR=0.6, 95%CI: 0.4-0.8)。此外,参松养心在术后 3 个月和 6 个月显著降低了房颤负荷(分别为 2.8% vs 7.6%, P=0.002 和 3.3% vs 7.7%, P=0.025),提高患者生活质量。

荟萃分析[174-178]显示,持续性房颤患者行导管消融术后,参松养心联合 AAD 或单独应用 3 月以上,可使房性快速性心律失常发生风险降低 43% (*P*<0.001)。

表 3 参松养心胶囊治疗心律失常的建议

建议	推荐类别	证据等级
对于症状性室性早搏患者,无论是否合并结构性心脏病,参松养心均可减少室性早 搏次数,改善心慌、胸闷等临床症状	I	A
对于室性早搏合并左心室收缩功能不全的患者,参松养心可减少室性早搏次数,改善左心功能,无致心律失常的副作用	IIa	В
对于窦性心动过缓、或室性早搏合并窦性心动过缓的患者,参松养心可提高窦性心律、减少室性早搏次数,改善生活质量	IIa	В
对于阵发性房颤患者,参松养心单独使用或联合 AAD,可降低房颤发作频率、缩短房颤持续时间	IIa	В
对于持续性房颤导管消融术后,参松养心单独使用、或联合 AAD,可降低术后房颤早期复发率及/或房性快速性心律失常发生率	IIa	В

注: AAD, 抗心律失常药物。

4.4.4 参松养心的安全性

根据中国国家药品不良反应监测系统^[52],截至 2025 年 3 月,收到参松养心药品不良反应报告共计 9835 件,报告率约 0.75‰,其不良反应发生率属于非常罕见级别。不良反应表现主要为腹胀、恶心、肠胃气胀、腹部不适、呕吐、皮疹等。

SS-AFRF 研究[174]显示,参松养心与安慰剂组的不良事件(67.4% vs 67.0%, P=0.94)、严重不良事件(8.5% vs 11.5%, P=0.15)及肝肾功能水平(P>0.05)均无显著差异。

4.5 通络药物与慢性心力衰竭

4.5.1 芪苈强心"气血水同治分消"的组方特色

基于"不通"一心衰阶段证候特征和临床表现,确立"气血水同治分消"治法代表药物 芪苈强心作为干预药物。方中以黄芪、附子、人参、桂枝等益气温阳,丹参、红花活血通络,葶苈子、泽泻、香加皮等利水消肿,体现"气血水同治分消"组方特点,为其全方位整体治疗慢性心衰提供了组方依据[12]。

4.5.2 芪苈强心治疗慢性心衰的作用机制

4.5.2.1 改善心衰血流动力学

强心: 芪苈强心通过抑制心肌细胞膜 Na⁺/K⁺-ATP 酶活性,增强副交感神经张力并延缓房室传导^[179]。Liang 等研究发现^[180,181],在多种心衰动物模型中,芪苈强心显著提高 LVEF、FS、左室压力最大上升速率及左室心肌收缩力,降低左室舒张末压,改善心功能。

利尿: 芪苈强心显著增加心衰模型大鼠肾血流量,降低尿渗量,其调控精氨酸加压素(arginine vasopressin, AVP)水平的作用优于传统利尿剂呋塞米;下调肾集合管上皮细胞 2型 AVP 受体及水通道蛋白 2(aquaporin 2, AQP2)表达,降低组织对 AVP 的敏感性;双重调节血浆 AVP 水平及其受体通路,有效减少肾小管水重吸收[182,183]。

扩血管: 芪苈强心明显增加血浆及主动脉降钙素基因相关肽表达水平,激活 NO-环磷酸 鸟苷(cyclic guanosinc monophosphate, cGMP)-蛋白激酶信号级联反应发挥血管舒张效应 [182]。

4.5.2.2 拮抗神经内分泌系统过度激活

抑制 RAAS 系统激活: 芪苈强心可降低 Ang II、血浆肾素活性及醛固酮水平,下调血管紧张素转换酶及血管紧张素 I 型受体表达,抑制心室重构,改善心功能[184]。

抑制交感神经过度激活: 芪苈强心能有效降低心衰动物血浆去甲肾上腺素、促肾上腺皮质激素、前列腺素 E2 及 NT-proBNP 等神经内分泌因子水平,降低交感神经兴奋性,改善心功能,延缓心衰进程,其降低 BNP 水平优于美托洛尔[181,185,186]; 通过中枢调控机制改善交感神经过度激活状态,阻抑心室重构进程[187]。

4.5.2.3 调节免疫、抑制氧化应激和心肌纤维化

调节免疫炎症反应:在急性心肌梗死大鼠模型及扩张型心肌病患者中,芪苈强心表现出显著的炎症免疫调节作用,降低促炎因子 TNF-α水平,提升抗炎因子 IL-10 表达,重建促炎/抗炎平衡^[188-190];抑制 NF-κB 及 NLRP3 炎症小体活化,减少 T 淋巴细胞浸润及活化^[189-193],从而发挥抗炎和改善心室重构的作用。

抑制氧化应激及心肌纤维化: 芪苈强心通过激活 PI3K/Akt 等信号通路,降低 ROS 水平,上调 SOD 表达,减轻氧化应激^[194]; 芪苈强心可减少心肌梗死大鼠的心肌胶原沉积,调节基质金属蛋白酶/基质金属蛋白酶抑制剂的平衡,抑制心肌纤维化、延缓心室重构^[195-197],其作用与血管紧张素受体脑啡肽酶抑制剂相当^[192];改善心衰大鼠全心质量指数优于美托洛尔^[186]。

4.5.2.4 改善心肌代谢

芪苈强心可激活 PPARy/PGC-1α信号轴,促进脂肪酸β氧化[198-200];调控葡萄糖转运系统(GLUT1/GLUT4),增强葡萄糖摄取及氧化磷酸化[201,202],促进葡萄糖摄取和利用,且疗效与曲美他嗪相当[201];激活 AMPK/PGC-1α通路,抑制病理性无氧糖酵解[199-202];保护线粒体结构完整性,改善电子传递链功能[203,204]。

4.5.2.5 保护心肌微血管和心肌细胞

微血管内皮保护: 芪苈强心能抑制 VCAM-1、ICAM-1 及心肌营养因子表达,改善心肌 微血管内皮结构与功能 [205]; 激活神经调节蛋白 1(neuregulin-1, NRG-1)/表皮生长因子受体(epidermal growth factor receptor,EGFR)-PI3K/Akt/mTOR 自噬通路,促进缺氧条件下血管新生并减少微血管内皮细胞凋亡 [206-209]。

心肌细胞保护: 芪苈强心通过调控 Bcl-2/Bax 表达平衡,抑制 caspase 级联反应,发挥抗心肌凋亡作用^[181,194,210-213];通过 PTEN 诱导激酶 1 (PTEN-induced kinase 1, PINK1) /泛素蛋白连接酶(parkin)通路促进受损线粒体清除^[214];调控 PI3K/糖原合成激酶 3β (glycogen synthase kinase-3β, GSK-3β) 及 mTOR 信号网络,维持自噬稳态,保护心肌细胞^[215-218]。

4.5.3 芪苈强心在慢性心衰中的循证证据

4.5.3.1 射血分数降低的心衰

QUEST 研究[219]为多中心、双盲、安慰剂、随机对照临床试验,共纳入 3110 例射血分数降低的心衰(heart failure with reduced ejection fraction, HFrEF)患者,在标准心衰治疗基础上分别给予芪苈强心或安慰剂(TID,每次 4 粒)。结果显示,中位随访时间 18.3 个月,与安慰剂相比,芪苈强心组心血管死亡或心衰再入院的复合心血管事件风险降低 22%(P<0.001)、心衰再入院风险降低 24%(P=0.002)、心血管死亡风险降低 17%(P=0.045)。随访 3 个月时,芪苈强心组 NT-proBNP 水平下降>30%的比例明显高于安慰剂组(56.54% vs 49.86%,P=0.002)。此外,与安慰剂组相比,芪苈强心组心血管死亡和心衰再入院的复合终点事件风险在心衰合并冠心病亚组(1156 例 vs 1165 例)下降 24%和心衰合并高血压亚组(708 例 vs 741 例)下降 31%。

QLQX-DCM 研究 1900 为多中心、双盲、安慰剂、随机对照临床试验,共纳入 345 例扩张型心肌病患者,在指南指导下的最佳药物治疗(guideline-directed management and therapy, GDMT)基础上分别接受芪苈强心或安慰剂(TID,每次 4 粒)治疗。结果显示,随访 12 个月,两组与基线比较,芪苈强心降低干扰素- γ 、IL-17、TNF- α 和 IL-4、升高 IL-10(均 P<0.001),调节炎性因子失衡;芪苈强心组扩张型心肌病患者全因死亡率(-2.17%)和心衰再入院率(-2.28%)较对照组呈下降趋势。

在一项多中心、双盲、安慰剂、随机对照临床试验[220]中,共纳入 512 例 HFrEF 患者,在标准心衰治疗基础上分别给予芪苈强心或安慰剂(TID,每次 4 粒)12 周。结果显示,芪 苈强 心组 NT-proBNP 水平下降>30% 的比例显著高于安慰剂组(47.95% vs 31.98%,P<0.001),芪苈强心组患者复合心脏事件(包括心血管死亡、心衰再入院、心脏骤停后复 苏、心衰恶化静脉药物治疗及卒中)发生率较对照组显著降低(4.51% vs 10.93%, P=0.008)。

毛天诗等发表的一项纳入上述 3 篇研究的荟萃分析 [221]显示,芪苈强心使慢性心衰患者的心血管死亡或心衰再入院组成的复合心血管事件风险降低 18% (P=0.0005),心血管死亡风险降低 17% (P=0.03),心衰再入院风险降低 18% (P=0.004),全因死亡风险降低 16% (P=0.03)。芪苈强心服用 4 周以上,LVEF 提高 6.04% (P<0.001)、左室舒张末期内径减小 3.66 mm (P<0.001)、纽约心功能分级明显改善 (P<0.001)、6 分钟步行试验距离增加 51.27 m(P<0.001)、明尼苏达生活质量评分降低 8.97 分(P<0.001)。服用 3 个月后,NT-proBNP 水平下降 276.78 pg/mL (P<0.001)。

4.5.3.2 射血分数保留的心衰

随机对照研究提示射血分数保留的心衰(heart failure with preserved ejection fraction, HFpEF)患者在 GDMT 基础上应用芪苈强心 6 个月,E/A、LVEF、6 分钟步行试验距离水平较治疗前提高,且提升幅度显著高于对照组(P<0.05);左房容积指数、左室舒张末期内径、明尼苏达心衰患者生活质量量表评分、CRP、NT-proBNP 水平降低幅度显著低于对照组(P<0.05);多项临床研究显示,HFpEF 患者服用芪苈强心 1 个月以上,左室舒张功能(如 E/A、E/e')明显改善[222-225]。

表 4 芪苈强心胶囊治疗慢性心力衰竭的建议

建议	推荐类别	证据等级
HFrEF 患者,在 GDMT 基础上联合芪苈强心,可以进一步降低心衰再入院率及心血管死亡率	I	A
芪苈强心可改善慢性心衰患者心功能及心室重构指标,提高运动耐量、改善生活 质量	I	A

注: HFrEF, 射血分数降低的心力衰竭; GDMT, 指南指导下的最佳药物治疗。

4.5.4 芪苈强心的安全性

根据国家药品不良反应监测系统^[52],截至 2025 年 3 月,收到芪苈强心药品不良反应报告共计 4777 件,报告率约 2.34‰,其不良反应发生率属于罕见级别。不良反应表现主要为恶心、腹泻、腹部不适、呕吐、腹痛、皮疹等。

QUEST 研究[219]及 QLQX-DCM 研究[190]均显示,芪苈强心与安慰剂组的胃肠道症状发生率无统计学差异。如服用芪苈强心引起恶心、腹部不适、腹痛、呕吐、腹胀及腹泻等消化道不良反应,建议减少用药剂量或改为饭后服用,可减轻相关症状,不建议与地高辛联用。

QUEST 研究[219]显示,在 GDMT 基础上加用芪苈强心,对慢性心衰患者的血压、心率无显著影响;与安慰剂组相比,芪苈强心未引起肾功能恶化(3.79% vs 4.50%)及肝酶水平增加(2.57% vs 3.09%)的风险;该研究排除血肌酐>176.82umol/L 的患者。

QLQX-DCM 研究[190]显示,芪苈强心组患者出现地高辛血液浓度过量的比例与安慰剂组相当(1.17% vs 1.17%)。

5 总结

心血管疾病是全球死亡的主要原因。心血管事件链反映心血管疾病整体性、复杂性的系统特性,与中医整体观高度契合,带来了疾病干预理念的思维转变。脉络学说指导下的通络药物,津力达"健脾运津"、通心络"搜剔疏通"、参松养心"温清补通"、芪苈强心"气血水同治分消",覆盖心血管事件链不同阶段,达到精准干预,为防治心血管事件链提供具有中国特色的中西医结合临床药物治疗方案。本共识描述了心血管事件链及脉络学说的重要价值,针对糖尿病及糖尿病前期、缺血性心脑血管疾病、心律失常、慢性心衰等,分别介绍了津力达、通心络、参松养心、芪苈强心各个通络药物的组方特色、阐明了相关的药理作用机制、总结了各个药物的主要循证临床证据及用药安全性。此外,汇总专家临床经验,结合循证证据,根据 ESC 标准,针对心血管事件链各个关键环节的中西医结合治疗给予了推荐建议和临床证据等级,供广大临床医生在临床实践中参考与应用。

附录 A (规范性) 研究方法与技术路线

共识制定流程与方法,参考中华中医药学会发布的《中医临床实践指南制修订中专家共识技术规范》(编号T/CACM1049-2017),制定流程如图 A.1 所示。

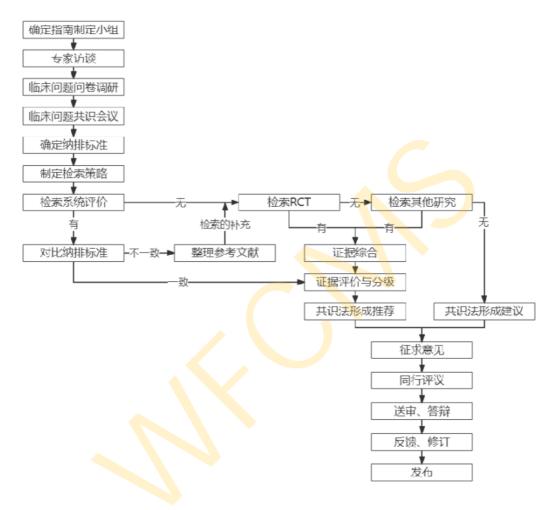


图 A. 1 专家共识制定流程图

附录 B

(资料性)

临床研究文献筛选标准及证据级别

本共识的推荐标准及证据质量评价标准参考欧洲心脏病学会(ESC)指南(表 B.1、表 B.2)。通络药物系统干预心血管事件链常用药物可见表 B.3。

表 1 推荐级别的定义

级别	含义
I类	已证实和(或)一致公认有益、有用和有效的操作或治疗
IIa类	有关证据/观点倾向于有用和(或)有效,应用这些操作或治疗是合理的
IIb类	有关证据/观点尚不能被充分证明有用和(或)有效,可考虑应用
III 类	已证实和(或)一致公认无用和(或)无效,并对一些病例可能有害的操作或治疗,不推荐使用

表 2 证据级别的定义

级别	含义
Α	资料来源于多项随机对照临床试验或荟萃分析
В	资料来源于单项随机对照临床试验或多项非随机对照研究
С	仅为专家共识意见和(或)小型临床试验、回顾性研究或注册登记研究

表 3 通络药物系统干预心血管事件链常用药物

通络药物	常用口服剂量
津力达颗粒	9g/次,每日 3 次
	颈动脉硬化: 6粒/次,每日2次
通心络胶囊	冠心病: 4粒/次,每日3次
	STEMI: 急诊 PCI 术前负荷剂量 8 粒,术后 4 粒/次,每日 3 次
	脑卒中: 4粒/次,每日3次
参松养心胶囊	4 粒/次,每日 3 次
芪苈强心胶囊	4 粒/次,每日 3 次

注: STEMI, ST 段抬高型心肌梗死; PCI, 经皮冠状动脉介入术。

参考文献

- [1] Mensah G A, Fuster V, Roth G A. A Heart-Healthy and Stroke-Free World: Using Data to Inform Global Action[J]. J Am Coll Cardiol, 2023, 82 (25): 2343-2349. DOI: 10.1016/j.jacc.2023.11.003.
- [2] World Heart Report 2023: Confronting the World's Number One Killer[R]. Geneva, Switzerland: World Heart Federation, 2023.
- [3] "健康中国 2030"规划纲要[R]. 中国: 国务院,2016.
- [4] Dzau V, Braunwald E. Resolved and unresolved issues in the prevention and treatment of coronary artery disease: a workshop consensus statement[J]. Am Heart J, 1991, 121 (4 Pt 1): 1244-1263.
- [5] 国家心血管病中心,中国心血管健康与疾病报告编写组,胡盛寿. 中国心血管健康与疾病报告 2023 概 要 [J]. 中 国 循 环 杂 志 , 2024, 39 (7): 625-660. DOI: 10.3969/j.issn.1000-3614.2024.07.001.
- [6] Trusinskis K, Knoka E, Caunite L, et al. What Is Hidden Behind Yellow Pixels: from Pathology to Intravascular Imaging of Atherosclerotic Plaque[J]. Curr Atheroscler Rep, 2022, 24 (2). DOI: 10.1007/s11883-022-00990-3.
- [7] Zhang M, Liu Q, Meng H, et al. Ischemia-reperfusion injury: molecular mechanisms and therapeutic targets[J]. Signal Transduct Target Ther, 2024, 9 (1): 12. DOI: 10.1038/s41392-023-01688-x.
- [8] Heusch G, Gersh B J. The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: a continual challenge[J]. Eur Heart J, 2017, 38 (11): 774-784. DOI: 10.1093/eurheartj/ehw224.
- [9] Eltzschig H K, Eckle T. Ischemia and reperfusion--from mechanism to translation[J]. Nat Med, 2011, 17 (11): 1391-1401. DOI: 10.1038/nm.2507.
- [10] Packer M. Traditional Chinese medicine: cardiovascular drug development through a holistic framework[J]. Eur Heart J, 2024, 45 (40): 4315-4317. DOI: 10.1093/eurheartj/ehae625.
- [11] 吴以岭, 贾振华, 常丽萍, 等. 脉络学说营卫理论指导血管病变防治研究[J]. 中国实验方剂学杂志, 2019, 25 (01): 1-10. DOI: 10.13422/j.cnki.syfjx.20190199.
- [12] 吴以岭. 络病学[M]. 北京: 中国中医药出版社,2017.
- [13] 尹玉洁, 常丽萍, 朱垚, 等. 基于脉络学说指导和医案数据挖掘的心血管事件链证治规律分析[]]. 中国实验方剂学杂志, 2022, 28 (18): 144-151. DOI: 10.13422/j.cnki.syfjx.20220651.
- [14] 贾振华. 以脉络学说营卫理论指导心血管事件链的系统干预[J]. 中医杂志, 2023, 64 (07): 655-661. DOI: 10.13288/j.11-2166/r.2023.07.002.
- [15] 贾振华."调营卫津血"系统干预心血管事件链用药规律[J]. 疑难病杂志, 2024, 23 (12): 1409-1412.
- [16] Gyberg V, De Bacquer D, Kotseva K, et al. Screening for dysglycaemia in patients with coronary artery disease as reflected by fasting glucose, oral glucose tolerance test, and HbA1c: a report from EUROASPIRE IV--a survey from the European Society of Cardiology[J]. Eur Heart J, 2015, 36 (19): 1171-1177. DOI: 10.1093/eurheartj/ehv008.

- [17] Kim H, Ahn J-M, Kang D-Y, et al. Management of Coronary Vulnerable Plaque With Medical Therapy or Local Preventive Percutaneous Coronary Intervention[J]. JACC Asia, 2024, 4 (6): 425-443. DOI: 10.1016/j.jacasi.2024.04.001.
- [18] Mitka M. Cholesterol drug lowers LDL-C levels but again fails to show clinical benefit[J]. JAMA, 2010, 303 (3): 211-212. DOI: 10.1001/jama.2009.1915.
- [19] Ridker P M, Bhatt D L, Pradhan A D, et al. Inflammation and cholesterol as predictors of cardiovascular events among patients receiving statin therapy: a collaborative analysis of three randomised trials[J]. Lancet, 2023, 401 (10384): 1293-1301. DOI: 10.1016/S0140-6736(23)00215-5.
- [20] Welt F G P, Batchelor W, Spears J R, et al. Reperfusion Injury in Patients With Acute Myocardial Infarction: JACC Scientific Statement[J]. J Am Coll Cardiol, 2024, 83 (22): 2196-2213. DOI: 10.1016/j.jacc.2024.02.056.
- [21] Heusch G. Myocardial ischaemia-reperfusion injury and cardioprotection in perspective[J]. Nat Rev Cardiol, 2020, 17 (12): 773-789. DOI: 10.1038/s41569-020-0403-y.
- [22] Joglar J A, Chung M K, Armbruster A L, et al. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines[J]. Circulation, 2024, 149 (1). DOI: 10.1161/CIR.0000000000001193.
- [23] Darkner S, Chen X, Hansen J, et al. Recurrence of arrhythmia following short-term oral AMIOdarone after CATheter ablation for atrial fibrillation: a double-blind, randomized, placebo-controlled study (AMIO-CAT trial)[J]. Eur Heart J, 2014, 35 (47): 3356-3364. DOI: 10.1093/eurheartj/ehu354.
- [24] Verma A, Jiang C-Y, Betts T R, et al. Approaches to catheter ablation for persistent atrial fibrillation[]]. N Engl J Med, 2015, 372 (19): 1812-1822. DOI: 10.1056/NEJMoa1408288.
- [25] Taylor C J, Ordóñez-Mena J M, Roalfe A K, et al. Trends in survival after a diagnosis of heart failure in the United Kingdom 2000-2017: population based cohort study[J]. BMJ, 2019, 364: l223. DOI: 10.1136/bmj.l223.
- [26] 中华医学会心血管病学分会,中国医师协会心血管内科医师分会,中国医师协会心力衰竭专业委员会,等.中国心力衰竭诊断和治疗指南 2024[J].中华心血管病杂志,2024,52 (3): 235-275. DOI: 10.3760/cma.j.cn112148-20231101-00405.
- [27] Liu Y, Song A, Zang S, et al. Jinlida reduces insulin resistance and ameliorates liver oxidative stress in high-fat fed rats[J]. J Ethnopharmacol, 2015, 162: 244-252. DOI: 10.1016/j.jep.2014.12.040.
- [28] 刘超, 朱亚军, 刘颐轩, 等. 津力达颗粒对骨骼肌线粒体生物发生和胰岛素敏感性的影响[J]. 北京中医药, 2019, 38 (01): 30-34. DOI: 10.16025/j.1674-1307.2019.01.007.
- [29] 宋郁珍, 赵建红, 王军媛, 等. 津力达颗粒对 2 型糖尿病大鼠氧化应激作用的影响[J]. 河南中医, 2013, 33 (06): 875-876. DOI: 10.16367/j.issn.1003-5028.2013.06.085.
- [30] 史婧丽, 吴莹, 宋玉萍, 等. 津力达颗粒对糖尿病大鼠胰岛 B 细胞的保护作用[J]. 第二军医大学学报, 2012, 33 (04): 385-389.

- [31] 唐艳阁, 王敬, 杨家祥. 津力达颗粒对糖负荷小鼠血糖及相关因子的调节作用[J]. 中国医科大学学报, 2019, 48 (02): 159-163.
- [32] Zang S-S, Song A, Liu Y-X, et al. Chinese medicine Jinlida (JLD) ameliorates high-fat-diet induced insulin resistance in rats by reducing lipid accumulation in skeletal muscle[J]. Int J Clin Exp Med, 2015 (3): 4620-4634.
- [33] 金鑫, 张会欣, 张彦芬, 等. 津力达对高脂诱导的胰岛素抵抗 ApoE-/-小鼠骨骼肌脂质转运酶类的表达变化[J]. 中国中药杂志, 2015, 40 (06): 1156-1160.
- [34] 陈伟, 王之旸, 付友娟, 等. 津力达颗粒对高糖作用下小鼠胰岛β细胞增殖和凋亡的影响[J]. 医药导报, 2022, 41 (09): 1312-1317.
- [35] 陈伟, 王之旸, 付友娟, 等. 津力达颗粒对高糖作用下 MIN6 细胞的保护作用研究[J]. 华南国 防医学杂志, 2022, 36 (08): 594-598. DOI: 10.13730/j.issn.1009-2595.2022.08.002.
- [36] 刘妍,李翠茹,常丽萍,等. 津力达颗粒对高脂饮食诱导的肥胖小鼠代谢紊乱及FGF21/AMPK 信号通路的影响[J]. 中草药, 2021, 52 (05): 1351-1359.
- [37] 金鑫, 张会欣, 崔雯雯. 津力达颗粒对高脂诱导胰岛素抵抗 ApoE-/-小鼠骨骼肌 DGAT1 的影响[]]. 2015, 38 (06): 1237-1241. DOI: 10.13863/j.issn1001-4454.2015.06.032.
- [38] 张慧, 周鸿儒, 郝媛媛, 等. 中药津力达颗粒通过提高棕色脂肪活性改善高脂饮食喂养小鼠的代谢紊乱[]]. 中国药理学与毒理学杂志, 2019, 33 (09): 748.
- [39] 臧莎莎, 刘颐轩, 宋光耀, 等. 津力达对胰岛素<mark>抵</mark>抗大鼠骨骼肌脂质沉积及线粒体功能的影响[J]. 中成药, 2014, 36 (07): 1371-1376.
- [40] Wang D, Tian M, Qi Y, et al. Jinlida granule inhibits palmitic acid induced-intracellular lipid accumulation and enhances autophagy in NIT-1 pancreatic β cells through AMPK activation[J]. J Ethnopharmacol, 2015, 161. DOI: 10.1016/j.jep.2014.12.005.
- [41] 金鑫, 张会欣, 崔雯雯, 等. 津力达颗粒对高脂诱导的胰岛素抵抗 ApoE-/-小鼠骨骼肌 SREBP-1c 的影响[[]. 中成药, 2015, 37 (04): 705-710.
- [42] 金鑫, 张彦芬, 秘尧, 等. 津力达对高脂诱导的胰岛素抵抗 ApoE-/-小鼠骨骼肌胆固醇相关基因的影响[]]. 中国药理学通报, 2014, 30 (11): 1600-1604.
- [43] 臧莎莎, 刘颐轩, 宋光耀, 等. 津力达对胰岛素抵抗大鼠骨骼肌 GLUT4 表达的影响[J]. 河北医药, 2014, 36 (15): 2259-2261.
- [44] 刘颐轩, 臧莎莎, 宋光耀, 等. 中药津力达对高脂喂养大鼠肝脏氧化应激及 JNK、p38MAPK 通路的影响[J]. 中华中医药杂志, 2015, 30 (06): 2156-2159.
- [45] 刘红利, 孟令华, 田金悦, 等. 津力达联合通心络减轻高糖环境下肾脏微血管内皮细胞内质 网凋亡[]]. 中国病理生理杂志, 2020, 36 (08): 1375-1381.
- [46] 陈亮, 张诚, 丁英钧. 通心络胶囊联合津力达颗粒对糖尿病肾病大鼠 TGF-β1/Smad 信号转导通路的作用研究[J]. 中华中医药杂志, 2019, 34 (07): 3186-3189.
- [47] 丁英钧, 陈亮, 王海蓉, 等. 通心络超微粉联合津力达颗粒对糖尿病肾病大鼠 Akt/mTOR 信号 转 导 通 路 的 影 响 [J]. 中 国 实 验 方 剂 学 杂 志 , 2016, 22 (05): 110-114. DOI: 10.13422/j.cnki.syfjx.2016050110.
- [48] Ji H, Zhao X, Chen X, et al. Jinlida for Diabetes Prevention in Impaired Glucose Tolerance and Multiple Metabolic Abnormalities: The FOCUS Randomized Clinical Trial[J]. JAMA Intern Med,

- 2024, 184 (7): 727-735. DOI: 10.1001/jamainternmed.2024.1190.
- [49] Pan J, Xu Y, Chen S, et al. The Effectiveness of Traditional Chinese Medicine Jinlida Granules on Glycemic Variability in Newly Diagnosed Type 2 Diabetes: A Double-Blinded, Randomized Trial[J]. J Diabetes Res, 2021, 2021: 6303063. DOI: 10.1155/2021/6303063.
- [50] Lian F, Tian J, Chen X, et al. The Efficacy and Safety of Chinese Herbal Medicine Jinlida as Add-On Medication in Type 2 Diabetes Patients Ineffectively Managed by Metformin Monotherapy: A Double-Blind, Randomized, Placebo-Controlled, Multicenter Trial[J]. PLoS One, 2015, 10 (6): e0130550. DOI: 10.1371/journal.pone.0130550.
- [51] Lian F, Jin D, Bao Q, et al. Effectiveness of traditional Chinese medicine Jinlida granules as an add-on therapy for type 2 diabetes: A system review and meta-analysis of randomized controlled trials[]]. J Diabetes, 2019, 11 (7): 540-551. DOI: 10.1111/1753-0407.12877.
- [52] 国家药品不良反应监测中心. 药品上市许可持有人药品不良反应直接报告系统[DB/OL]. (2025-03-31). https://daers.adrs.org.cn
- [53] Cheng Y T, Yang Y J, Zhang H T, et al. Pretreatment with Tongxinluo protects porcine myocardium from ischaemia/reperfusion injury through a nitric oxide related mechanism[J]. Chin Med J (Engl), 2009 (13): 1529-38.
- [54] Li X D, Yang Y J, Geng Y J, et al. Tongxinluo reduces myocardial no-reflow and ischemia-reperfusion injury by stimulating the phosphorylation of eNOS via the PKA pathway[J]. Am J Physiol Heart Circ Physiol, 2010, 299 (4): H1255-61. DOI: 10.1152/ajpheart.00459.2010.
- [55] Chen G, Xu C, Gillette T G, et al. Cardiomyocyte-derived small extracellular vesicles can signal eNOS activation in cardiac microvascular endothelial cells to protect against Ischemia/Reperfusion injury[J]. Theranostics, 2020, 10 (25): 11754-11774. DOI: 10.7150/thno.43163.
- [56] Li X D, Yang Y J, Cheng Y T, et al. Protein kinase A-mediated cardioprotection of Tongxinluo relates to the inhibition of myocardial inflammation, apoptosis, and edema in reperfused swine hearts[J]. Chin Med J (Engl), 2013 (8): 1469-79.
- [57] 熊亮,黄从新,黄鹤,等. 通心络胶囊对兔心肌梗死后心肌微循环、心功能及心电生理的影响[]]. 疑难病杂志, 2014, 13 (04): 331-335.
- [58] 吴以岭, 袁国强, 游佳华, 等. 通心络超微粉对高脂饮食兔主动脉内皮保护机制的实验研究 [J]. 中国病理生理杂志, 2007 (04): 629-633.
- [59] Liu S, Chang L, Wei C. The sonic hedgehog pathway mediates Tongxinluo capsule-induced protection against blood-brain barrier disruption after ischaemic stroke in mice[J]. Basic Clin Pharmacol Toxicol, 2019, 124 (6): 660-669. DOI: 10.1111/bcpt.13186.
- [60] Liu S, Wei C, Kang N, et al. Chinese medicine Tongxinluo capsule alleviates cerebral microcirculatory disturbances in ischemic stroke by modulating vascular endothelial function and inhibiting leukocyte-endothelial cell interactions in mice: A two-photon laser scanning microscopy study[J]. Microcirculation, 2018, 25 (2). DOI: 10.1111/micc.12437.
- [61] 郎艳松, 秘红英, 刘美之, 等. 通心络联合阿托伐他汀、阿司匹林对家兔动脉粥样硬化早期血管外膜炎症因子表达的干预[]]. 中国病理生理杂志, 2015, 31 (01): 154-159.

- [62] Chen W Q, Zhong L, Zhang L, et al. Chinese medicine tongxinluo significantly lowers serum lipid levels and stabilizes vulnerable plaques in a rabbit model[J]. J Ethnopharmacol, 2009, 124 (1): 103-10. DOI: 10.1016/j.jep.2009.04.009.
- [63] Zhang L, Liu Y, Lu X T, et al. Traditional Chinese medication Tongxinluo dose-dependently enhances stability of vulnerable plaques: a comparison with a high-dose simvastatin therapy[J]. Am J Physiol Heart Circ Physiol, 2009, 297 (6): H2004-14. DOI: 10.1152/ajpheart.00208.2009.
- [64] Ma L, Liu X, Lu H, et al. Traditional Chinese medication Tongxinluo inhibits inflammatory angiogenesis via Bmx/NF-κB/MAPK pathways[J]. EUR HEART J SUPPL, 2015, 17 (suppl_B): B13-B22. DOI: 10.1093/eurheartj/suv020.
- [65] Qi Y, Liu W, Yan X, et al. Tongxinluo May Alleviate Inflammation and Improve the Stability of Atherosclerotic Plaques by Changing the Intestinal Flora[J]. Front Pharmacol, 2022, 13: 805266. DOI: 10.3389/fphar.2022.805266.
- [66] Zhang L, Li Y, Yang B S, et al. A Multicenter, Randomized, Double-Blind, and Placebo-Controlled Study of the Effects of Tongxinluo Capsules in Acute Coronary Syndrome Patients with High On-Treatment Platelet Reactivity[J]. Chin Med J (Engl), 2018, 131 (5): 508-515. DOI: 10.4103/0366-6999.226064.
- [67] Su W, Sun A, Xu D, et al. Tongxinluo inhibits oxidized low-density lipoprotein-induced maturation of human dendritic cells via activating peroxisome proliferator-activated receptor gamma pathway[J]. J Cardiovasc Pharmacol, 2010, 56 (2): 177-83. DOI: 10.1097/FJC.0b013e3181e5f0f8.
- [68] Li Q, Li N, Cui H H, et al. Tongxinluo exerts protective effects via anti-apoptotic and pro-autophagic mechanisms by activating AMPK pathway in infarcted rat hearts[J]. Exp Physiol, 2017, 102 (4): 422-435. DOI: 10.1113/ep086192.
- [69] Bai W W, Xing Y F, Wang B, et al. Tongxinluo Improves Cardiac Function and Ameliorates Ventricular Remodeling in Mice Model of Myocardial Infarction through Enhancing Angiogenesis[J]. Evid Based Complement Alternat Med, 2013, 2013: 813247. DOI: 10.1155/2013/813247.
- [70] 谢莲娜, 曾定尹, 张海山, 等. 通心络通过降低循环血管紧张素 II 水平及抑制局部氧化应激 反 应 预 防 血 管 痉 挛 [J]. 中 国 动 脉 硬 化 杂 志 , 2010, 18 (09): 677-681. DOI: 10.20039/j.cnki.1007-3949.2010.09.004.
- [71] Xie L N, Zeng D Y, Zhang H S, et al. Effect of tongxinluo on vasoconstriction induced by the chronic injury of the adventitia in the rat carotid artery[J]. J Ethnopharmacol, 2010, 131 (2): 300-5. DOI: 10.1016/j.jep.2010.06.037.
- [72] Guan Q, Liu M, Liu R, et al. Tongxinluo Induces nNOS Expression Through ERK Activation: Possible Contribution to the Effects of Tongxinluo to Attenuate Vasoconstriction[J]. J Cardiovasc Pharmacol, 2015, 66 (1): 9-15. DOI: 10.1097/fjc.000000000000228.
- [73] 吴晓莉, 王宏涛, 张会欣, 等. 大鼠脑缺血后缺血区 BDNF 表达变化及通心络的影响[J]. 疑难病杂志, 2009, 8 (05): 265-268+321.
- [74] 吴晓莉, 吴以岭, 王宏涛, 等. 大鼠脑缺血后缺血区 VEGF 表达变化及通心络的影响[]]. 中国

- 医药技术经济与管理, 2009, 3 (7): 56-62.
- [75] 吴以岭,吴正国,袁国强,等. 通心络对实验性大脑中动脉闭塞大鼠脑缺血微血管的保护作用[J]. 中华神经科杂志, 2007, 40 (01): 54-58.
- [76] Yu Z, Cai M, Li X, et al. Neuroprotective effects of Tongxinluo on focal cerebral ischemia and reperfusion injury in rats associated with the activation of the MEK1/2/ERK1/2/p90RSK signaling pathway[]]. Brain Res, 2018, 1685. DOI: 10.1016/j.brainres.2018.01.036.
- [77] Yu Z-H, Cai M, Xiang J, et al. PI3K/Akt pathway contributes to neuroprotective effect of Tongxinluo against focal cerebral ischemia and reperfusion injury in rats[J]. J Ethnopharmacol, 2016, 181. DOI: 10.1016/j.jep.2016.01.028.
- [78] Chang L, Hu L, Wei C, et al. Chinese medicine Tongxinluo capsule protects against blood-brain barrier disruption after ischemic stroke by inhibiting the low-density lipoprotein receptor-related protein 1 pathway in mice[J]. J Stroke Cerebrovasc Dis, 2020, 29 (9): 105071. DOI: 10.1016/j.jstrokecerebrovasdis.2020.105071.
- [79] Cheng X, Hou Z, Sun J, et al. Protective effects of Tongxinluo on cerebral ischemia/reperfusion injury related to Connexin 43/Calpain II/Bax/Caspase-3 pathway in rat[J]. J Ethnopharmacol, 2017, 198: 148-157. DOI: 10.1016/j.jep.2017.01.004.
- [80] Wang X, Huang X, Yang M, et al. Tongxinluo promotes axonal plasticity and functional recovery after stroke[J]. Transl Neurosci, 2020, 11 (1): 428-438. DOI: 10.1515/tnsci-2020-0127.
- [81] Chen L, Wang X, Chen X, et al. Tongxinluo attenuates neuronal loss and enhances neurogenesis and angiogenesis in the ipsilateral thalamus and improves neurological outcome after focal cortical infarction in hypertensive rats[J]. Restor Neurol Neurosci, 2014, 32 (4): 533-546. DOI: 10.3233/RNN-140403.
- [82] Chen L, Wang X, Zhang J, et al. Tongxinluo Enhances Neurogenesis and Angiogenesis in Peri-Infarct Area and Subventricular Zone and Promotes Functional Recovery after Focal Cerebral Ischemic Infarction in Hypertensive Rats[J]. Evid Based Complement Alternat Med, 2016, 2016: 8549590. DOI: 10.1155/2016/8549590.
- [83] Feng R, Lin Q, Wei D, et al. Tongxinluo capsule in combination with conventional therapies for stable angina pectoris: A meta-analysis and systematic review[J]. Medicine, 2023, 102 (41): e35405. DOI: 10.1097/md.0000000000035405.
- [84] 王淇. 通心络胶囊联合西医常规用药治疗不稳定型心绞痛的临床疗效观察[J]. 中医药学报, 2015 (5): 104-106.
- [85] 宋红霞. 通心络胶囊联合阿托伐他汀钙片、盐酸曲美他嗪片治疗冠心病心绞痛临床观察[J]. 河北中医, 2017, 39 (7): 1053-1056. DOI: 10.3969/j.issn.1002-2619.2017.07.023.
- [86] 辛玲, 李建英, 王永, 等. 通心络胶囊治疗不稳定心绞痛临床观察[J]. 实用心脑肺血管病杂志, 2008, 16 (4): 256-259. DOI: 10.3969/j.issn.1008-5971.2008.04.005.
- [87] 陈荣兴, 李林林. 通心络胶囊对不稳定型心绞痛的干预作用[J]. 贵州医药, 2009, 33 (10): 923-924. DOI: 10.3969/j.issn.1000-744X.2009.10.030.
- [88] 于宁, 陈龙霏. 通心络胶囊治疗不稳定性心绞痛 68 例分析[J]. 中国当代医药, 2009, 16 (13): 104-105. DOI: 10.3969/j.issn.1674-4721.2009.13.063.

- [89] 于萍, 那坤. 氯吡格雷联合通心络胶囊治疗不稳定型心绞痛 30 例临床观察[J]. 安徽医药, 2011, 15 (3): 356-358. DOI: 10.3969/j.issn.1009-6469.2011.03.042.
- [90] 张荣珍. 通心络胶囊佐治不稳定性心绞痛 43 例[J]. 光明中医, 2011, 26 (11): 2233-2234. DOI: 10.3969/j.issn.1003-8914.2011.011.034.
- [91] 孙淑娟, 张萍, 李文喆, 等. 通心络联合阿司匹林治疗不稳定型心绞痛的临床疗效观察[J]. 中医药学报, 2015 (3): 126-128.
- [92] 李慧霞. 通心络胶囊联合阿托伐他汀钙片对冠心病不稳定性心绞痛的治疗效果研究[J]. 河南医学研究, 2017, 26 (23): 4263-4265. DOI: 10.3969/j.issn.1004-437X.2017.23.017.
- [93] 惠慧, 张明, 彭志国, 等. 通心络胶囊对不稳定性心绞痛患者心肌酶及心电图的影响[J]. 中国老年学杂志, 2018, 38 (9): 2080-2082. DOI: 10.3969/j.issn.1005-9202.2018.09.014.
- [94] 赵振涛, 岳照涵. 通心络胶囊联合氯吡格雷对冠心病不稳定性心绞痛老年患者症状改善及心 电图变化的影响 [J]. 世界最新医学信息文摘, 2018, 18 (20): 116-117. DOI: 10.19613/j.cnki.1671-3141.2018.20.078.
- [95] 彭根兴, 李绍敏. 通心络胶囊治疗不稳定型心绞痛 66 例临床观察[J]. 中西医结合心脑血管病杂志, 2010, 8 (03): 285-286.
- [96] 孙建华. 通心络胶囊治疗不稳定型心绞痛疗效观察[J]. 现代中西医结合杂志, 2010, 19 (22): 2786-2787.
- [97] 詹炎铭, 朱峰, 徐玄萍. 通心络治疗不稳定型心绞痛临床观察[J]. 现代中西医结合杂志, 2011, 20 (11): 1331-1332.
- [98] 郭完计,来春林,秦中胜,等. 高敏 C 反应蛋白、脂蛋白(a)与心绞痛的关系及通心络干预对其的影响[]]. 中西医结合心脑血管病杂志, 2008 (10): 1147-1149.
- [99] 王海波. 冠心病变异性心绞痛应用通心络治疗的效果分析与研究[J]. 中西医结合心血管病电子杂志, 2018, 6 (28): 145+147. DOI: 10.16282/j.cnki.cn11-9336/r.2018.28.115.
- [100] 马国斌, 余碧菁, 郑瑾, 等. 通心络胶囊治疗冠心病变异性心绞痛的临床疗效及对内皮功能的影响[J]. 中医临床研究, 2016, 8 (30): 25-27.
- [101] 方永有, 胡正清, 吴钢, 等. 通心络胶囊治疗心脏 X 综合征合并糖尿病的疗效观察[J]. 疑难病杂志, 2018, 17 (4): 325-328. DOI: 10.3969/j.issn.1671-6450.2018.04.001.
- [102] 秦纲, 贾永平, 吕吉元. 通心络胶囊联合尼可地尔、辛伐他汀对冠脉慢血流的干预效果[J]. 中 西 医 结 合 心 脑 血 管 病 杂 志 , 2017, 15 (22): 2807-2810. DOI: 10.3969/j.issn.1672-1349.2017.22.003.
- [103] 路航, 马荣荣. 通心络胶囊治疗 X 综合征伴冠状动脉血流储备异常患者的临床研究[J]. 疑难病杂志, 2007, 6 (11): 655-657. DOI: 10.3969/j.issn.1671-6450.2007.11.006.
- [104] 周江, 郭靖涛. 通心络预防冠心病患者支架术后再狭窄的临床研究[J]. 河北医学, 2007, 13 (10): 1188-1191. DOI: 10.3969/j.issn.1006-6233.2007.10.024.
- [105] 肖红兵, 张大东, 顾俊. 通心络对冠心病支架术后 C 反应蛋白及预后的影响[J]. 介入放射学杂志, 2007, 16 (8): 520-522. DOI: 10.3969/j.issn.1008-794X.2007.08.005.
- [106] 王艳红, 世慧娜. 通心络胶囊防治冠脉支架术后再狭窄疗效观察[J]. 现代中西医结合杂志, 2009, 18 (1): 39. DOI: 10.3969/j.issn.1008-8849.2009.01.028.
- [107] 王枫, 赵若楠, 程宇彤. 通心络胶囊联合双抗血小板方案对 PCI 术后阿司匹林抵抗患者预

- 后的影响[J]. 河北医学, 2018, 24 (7): 1081-1086. DOI: 10.3969/j.issn.1006-6233.2018.07.007. [108] 陆宏伟, 张健, 陈欣, 等. 通心络胶囊联合西药预防经皮冠状动脉介入术后冠状动脉再狭窄 90 例 临 床 观 察 [J]. 中 医 杂 志 , 2014, 55 (24): 2117-2120. DOI: 10.13288/j.11-2166/r.2014.24.013.
- [109] 刘蕾, 姜涛. 通心络胶囊与阿托伐他汀对 PCI 术后支架内再狭窄与炎症因子的协同干预作用 研 究 [J]. 中 西 医 结 合 心 脑 血 管 病 杂 志 , 2017, 15 (7): 769-771. DOI: 10.3969/j.issn.1672-1349.2017.07.001.
- [110] 梁燕敏, 王占君, 苏晓燕. 通心络胶囊对心肌梗死冠状动脉介入治疗患者术后再狭窄的疗效 评价 [J]. 中国中西医结合急救杂志, 2010, 17 (3): 175-176. DOI: 10.3969/j.issn.1008-9691.2010.03.017.
- [111] 翟小菊, 马光, 李松林. 吡格列酮联合通心络胶囊对 2 型糖尿病合并冠心病行 PCI 置入 DES 患者术后评估[]]. 新中医, 2019, 51 (8): 141-143. DOI: 10.13457/j.cnki.jncm.2019.08.042.
- [112] 王太昊, 岑运光, 田徐露, 等. 通心络胶囊联合阿托伐他汀对急性冠脉综合征行 PCI 术后血清 vWF、hs-CRP、 VEGF 水 平影 响 [J]. 中国临床研究, 2019, 32 (08): 1095-1098. DOI: 10.13429/j.cnki.cjcr.2019.08.023.
- [113] 郑华, 滕中华, 马立勤. 通心络胶囊对急性冠状动脉综合征介入术后患者 C-反应蛋白、血脂的影响[]]. 疑难病杂志, 2010, 9 (07): 487-488.
- [114] 陈壮, 冯婧, 贾治生, 等. 通心络联合替格瑞洛治疗急性冠脉综合征经皮冠状动脉介入治疗患者的临床研究[J]. 世界中医药, 2020, 15 (20): 3084-3087.
- [115] 张新平, 张勇. 通心络对急性心肌<mark>梗</mark>死患者置入支架后远期疗效的影响[J]. 中国药物与临床, 2009, 9 (03): 243-244.
- [116] 徐忠, 李雪. 通心络对急性冠脉综合征患者介入治疗术后炎性因子及早期心脏并发症的影响[J]. 现代中西医结合杂志, 2007 (02): 156-157+159.
- [117] Zhang H T, Jia Z H, Zhang J, et al. No-reflow protection and long-term efficacy for acute myocardial infarction with Tongxinluo: a randomized double-blind placebo-controlled multicenter clinical trial (ENLEAT Trial)[J]. Chin Med J (Engl), 2010 (20): 2858-64.
- [118] Yang Y, Li X, Chen G, et al. Traditional Chinese Medicine Compound (Tongxinluo) and Clinical Outcomes of Patients With Acute Myocardial Infarction: The CTS-AMI Randomized Clinical Trial[J]. JAMA, 2023, 330 (16): 1534-1545. DOI: 10.1001/jama.2023.19524.
- [119] Chen Y, Wang L, Cui Z, et al. Tongxinluo capsules for secondary prevention after ST-segment elevation myocardial infarction: A systematic review and meta-analysis[J]. J Ethnopharmacol, 2025, 342: 119419. DOI: 10.1016/j.jep.2025.119419.
- [120] Zhang M, Liu Y, Xu M, et al. Carotid artery plaque intervention with Tongxinluo capsule (CAPITAL): A multicenter randomized double-blind parallel-group placebo-controlled study[J]. Sci Rep, 2019, 9 (1): 4545. DOI: 10.1038/s41598-019-41118-z.
- [121] Dong Y, Jiang K, Li Z, et al. Tongxinluo and Functional Outcomes Among Patients With Acute Ischemic Stroke: A Randomized Clinical Trial[J]. JAMA Netw Open, 2024, 7 (9): e2433463. DOI: 10.1001/jamanetworkopen.2024.33463.
- [122] 鄢波, 周东, 郭富强, 等. 通心络对缺血性卒中患者(急性期和亚急性期)多中心、前瞻性随

- 机对照临床研究[]]. 华西医学, 2008 (05): 945-946.
- [123] 吴以岭, 李涛, 李妍, 等. 超微粉碎工艺通心络胶囊治疗中风病的临床研究[J]. 中国中药杂志, 2007 (18): 1928-1931.
- [124] 周红青, 王德任, 张灿飞, 等. 通心络胶囊治疗急性缺血性脑卒中疗效与安全性的系统评价[]]. 中国循证医学杂志, 2013, 13 (07): 844-851.
- [125] 丛伶男, 查鹏. 通心络胶囊治疗急性缺血性脑卒中疗效和安全性的 Meta 分析[J]. 中国处方药, 2024, 22 (07): 26-30.
- [126] Li N, Ma K J, Wu X F, et al. Effects of Chinese herbs on multiple ion channels in isolated ventricular myocytes[J]. Chin Med J (Engl), 2007 (12): 1068-74.
- [127] 李宁, 霍有平, 马克娟, 等. 通络药物对心肌细胞钠钙离子通道的影响[J]. 中华医学杂志, 2007, 87 (14): 995-998. DOI: 10.3760/j:issn:0376-2491.2007.14.016.
- [128] Zhang K, Shi L, Tang H J, et al. Effect of Shen Song Yang Xin Capsule on Myocardial Electrophysiology of Acute Atrial Fibrillation in Canine Model[J]. Chin Med J (Engl), 2017, 130 (20): 2513-2514. DOI: 10.4103/0366-6999.216404.
- [129] 张铁军, 张彩萍, 齐书英, 等. 参松养心胶囊对兔心肌梗死1周后瞬间外向钾电流跨壁异质性的影响[]]. 疑难病杂志, 2010, 9 (1): 3-5. DOI: 10.3969/j.issn.1671-6450.2010.01.002.
- [130] 李宁, 吴相锋, 马克娟, 等. 参松养心胶囊对心室肌细胞钾通道的影响[J]. 疑难病杂志, 2007, 6 (3): 133-137. DOI: 10.3969/j.issn.1671-6450.2007.03.002.
- [131] Zhao Y, Gao F, Zhang Y, et al. Shensong Yangxin capsules prevent ischemic arrhythmias by prolonging action potentials and alleviating Ca2+ overload[J]. Mol Med Rep, 2016, 13 (6): 5185-92. DOI: 10.3892/mmr.2016.5203.
- [132] 程林忠,程瑜蓉,李青. 参松养心胶囊对大鼠心室肌细胞 L-型钙电流和钾电流的抑制作用 [J]. 中国中医基础医学杂志, 2015, 21 (7): 806-808,823.
- [133] Sun L P, Li N, Wu Y L, et al. Effects of Shensong Yangxin capsule on pacemaker channels encoded by human HCN4 gene[J]. Chin Med J (Engl), 2010 (21): 3148-50.
- [134] 王智泉, 蒋学俊, 巢升平, 等. 参松养心胶囊对 Kv1.4 钾电流特性的影响[J]. 心脏杂志, 2009, 21 (6): 782-785,789.
- [135] 柴松波, 王硕仁, 姚立芳, 等. 参松养心胶囊对大鼠心肌梗死后心室重构及其离体心脏动作电位影响的研究[J]. 北京中医药, 2009, 28 (12): 967-971.
- [136] 张莉, 汪莲开, 陈世健, 等. 参松养心胶囊对糖尿病大鼠心房重构及心律失常的影响[J]. 中成药, 2015, 37 (12): 2573-2578. DOI: 10.3969/j.issn.1001-1528.2015.12.001.
- [137] 陈济明. 参松养心胶囊对糖尿病大鼠心肌 Cx40 的影响[D].安徽: 皖南医学院,2017.
- [138] Yang H J, Kong B, Shuai W, et al. Shensong Yangxin Protects Against Metabolic Syndrome-Induced Ventricular Arrhythmias by Inhibiting Electrical Remodeling[J]. Front Pharmacol, 2020, 11: 993. DOI: 10.3389/fphar.2020.00993.
- [139] Ma J, Yin C, Ma S, et al. Shensong Yangxin capsule reduces atrial fibrillation susceptibility by inhibiting atrial fibrosis in rats with post-myocardial infarction heart failure[J]. Drug Des Devel Ther, 2018, 12: 3407-3418. DOI: 10.2147/dddt.S182834.
- [140] Liu B L, Cheng M, Hu S, et al. Effect of the Shensong Yangxin Capsule on Energy Metabolism

- in Angiotensin II-Induced Cardiac Hypertrophy[J]. Chin Med J (Engl), 2018, 131 (19): 2287-2296. DOI: 10.4103/0366-6999.241819.
- [141] Dang S, Huang C X, Wang X, et al. Shensong Yangxin (SSYX) ameliorates disordered excitation transmission by suppressing cardiac collagen hyperplasia in rabbits with chronic myocardial infarction[J]. J Huazhong Univ Sci Technolog Med Sci, 2016, 36 (2): 162-167. DOI: 10.1007/s11596-016-1560-4.
- [142] Shen N, Li X, Zhou T, et al. Shensong Yangxin Capsule prevents diabetic myocardial fibrosis by inhibiting TGF-β1/Smad signaling[J]. J Ethnopharmacol, 2014, 157: 161-70. DOI: 10.1016/j.jep.2014.09.035.
- [143] Zhao H Y, Zhang S D, Zhang K, et al. Effect of Shensong Yangxin on the Progression of Paroxysmal Atrial Fibrillation is Correlated with Regulation of Autonomic Nerve Activity[J]. Chin Med J (Engl.), 2017, 130 (2): 171-178. DOI: 10.4103/0366-6999.197997.
- [144] Feng L, Gong J, Jin Z Y, et al. Electrophysiological effects of Chinese medicine Shen song Yang xin (SSYX) on Chinese miniature swine heart and isolated guinea pig ventricular myocytes[J]. Chin Med J (Engl), 2009 (13): 1539-43.
- [145] Zhang J, Li H, Wang D, et al. Shensong Yangxin Capsule Reduces the Susceptibility of Arrhythmia in db/db Mice via Inhibiting the Inflammatory Response Induced by Endothelium Dysfunction[J]. Drug Des Devel Ther, 2023, 17: 313-330. DOI: 10.2147/dddt.S392328.
- [146] Yang H J, Kong B, Shuai W, et al. Shensong Yangxin attenuates metabolic syndrome-induced atrial fibrillation via inhibition of ferroportin-mediated intracellular iron overload[J]. Phytomedicine, 2022, 101: 154086. DOI: 10.1016/j.phymed.2022.154086.
- [147] Jiang C, Wang X, Dang S, et al. Chinese Medicine Shensong Yangxin Capsule () Ameliorates Myocardial Microcirculation Dysfunction in Rabbits with Chronic Myocardial Infarction[J]. Chin J Integr Med, 2021, 27 (1): 24-30. DOI: 10.1007/s11655-018-2578-1.
- [148] Zou J G, Zhang J, Jia Z H, et al. Evaluation of the traditional Chinese Medicine Shensongyangxin capsule on treating premature ventricular contractions: a randomized, double-blind, controlled multicenter trial[J]. Chin Med J (Engl), 2011 (1): 76-83.
- [149] Wang X, Hu D, Dang S, et al. Effects of Traditional Chinese Medicine Shensong Yangxin Capsules on Heart Rhythm and Function in Congestive Heart Failure Patients with Frequent Ventricular Premature Complexes: A Randomized, Double-blind, Multicenter Clinical Trial[J]. Chin Med J (Engl), 2017, 130 (14): 1639-1647. DOI: 10.4103/0366-6999.209906.
- [150] Zhang F, Zou J, Yu H, et al. Acute Efficacy of a Traditional Chinese Medicine for Treatment of Frequent Premature Ventricular Contractions in Patients with Concomitant Sinus Bradycardia: Results from a Double-Blind, Placebo-Controlled, Multicentre, Randomized Clinical Trial[J]. Evid Based Complement Alternat Med, 2019, 2019: 3917282. DOI: 10.1155/2019/3917282.
- [151] 吴以岭, 谷春华, 高学东, 等. 参松养心胶囊治疗冠心病室性早搏的随机双盲多中心临床研究[]]. 疑难病杂志, 2007 (08): 449-452.
- [152] 刘雅琴, 李淑玲, 祁泉. 参松养心胶囊治疗老年冠心病室性早搏气阴两虚、心络瘀阻型患者临床观察[]]. 西部中医药, 2024, 37 (04): 139-141.

- [153] 张佳敏, 范秀风. 参松养心胶囊联合美托洛尔缓释片治疗老年冠心病室性期前收缩的疗效观察[]]. 中西医结合心脑血管病杂志, 2020, 18 (11): 1756-1758.
- [154] 徐贵成, 霍保民, 吴以岭, 等. 参松养心胶囊治疗冠心病室性早搏随机双盲、阳性药对照、 多中心临床研究[J]. 中国中医基础医学杂志, 2003 (03): 37-40.
- [155] 张利娟, 李常红, 盛怀汤. 参松养心胶囊改善冠心病患者室性早搏的临床观察[J]. 中国中医 基 础 医 学 杂 志 , 2013, 19 (07): 790-791+800. DOI: 10.19945/j.cnki.issn.1006-3250.2013.07.030.
- [156] 杨保林, 李瑛, 李艳. 参松养心胶囊治疗室性早搏疗效及安全性临床研究[J]. 中国中医基础医学杂志, 2013, 19 (07): 787-789.
- [157] 秦方, 闫亚非, 吴时达. 参松养心胶囊治疗室性早搏疗效观察[J]. 实用医院临床杂志, 2007 (04): 90-91.
- [158] 陈韵宇, 赖国勇. 参松养心胶囊联合富马酸比索洛尔对心力衰竭合并室性早搏的疗效[J]. 西北药学杂志, 2023, 38 (04): 137-141.
- [159] 谷春华, 吴以岭, 田书彦, 等. 参松养心胶囊对冠心病室性<mark>早搏疗效及心脏</mark>自主神经功能的影响[]]. 中国中西医结合杂志, 2005 (09): 783-786.
- [160] 刘洁, 严雪娇, 朱甜甜. 参松养心胶囊联合盐酸胺碘酮片治疗冠心病室性早搏临床疗效及对 血清 NO、 TXB2 含量的影响[J]. 中华中医药学刊, 2023, 41 (12): 82-85. DOI: 10.13193/j.issn.1673-7717.2023.12.014.
- [161] 彭小静, 李铭辉. 参松养心胶囊联合倍他乐克治疗特发性室性早搏的临床研究[J]. 中国中医基础医学杂志, 2014, 20 (08): 1154-1155. DOI: 10.19945/j.cnki.issn.1006-3250.2014.08.060.
- [162] 郭刚, 晁志. 参松养心胶囊联合倍他乐克治疗室性早搏的临床疗效观察[J]. 中成药, 2017, 39 (01): 225-227.
- [163] Liu Y, Li N, Jia Z, et al. Chinese medicine shensongyangxin is effective for patients with bradycardia: results of a randomized, double-blind, placebo-controlled multicenter trial[J]. Evid Based Complement Alternat Med, 2014, 2014: 605714. DOI: 10.1155/2014/605714.
- [164] 汪爱虎, 浦介麟, 齐小勇, 等. 参松养心胶囊治疗阵发性心房颤动的多中心临床研究[J]. 中华医学杂志, 2011, 91 (24): 1677-1681.
- [165] 何文凤, 薛成, 郑健康, 等. 参松养心胶囊联合沙库巴曲缬沙坦治疗阵发性心房颤动合并慢性心力衰竭对 hs-CRP、BNP、Ang [[及心功能的影响[]]. 中华中医药学刊, 2024, 42 (06): 95-98. DOI: 10.13193/j.issn.1673-7717.2024.06.018.
- [166] 肖金平, 付景秋, 李小雷, 等. 参松养心胶囊治疗高血压并发阵发性房颤的临床疗效及安全性分析[]]. 西部中医药, 2021, 34 (08): 110-112.
- [167] 刘华, 章嘉温. 参松养心胶囊治疗阵发性心房颤动 60 例[J]. 陕西中医, 2011, 32 (11): 1509-1510.
- [168] 韩艳华, 薛润发, 张秀峰. 参松养心胶囊对阵发性心房颤动发作频率的影响[J]. 中国误诊学杂志, 2010, 10 (28): 6827-6828.
- [169] 韩红彦, 周育德, 王燕, 等. 参松养心胶囊治疗阵发性心房颤动的临床研究[J]. 疑难病杂志, 2007 (07): 389-391.
- [170] 庹田, 张欣, 程亚玲, 等. 参松养心胶囊联合缬沙坦治疗阵发性房颤对窦性心律维持、左房

- 功 能 的 影 响 [J]. 中 华 中 医 药 学 刊 , 2020, 38 (02): 251-254. DOI: 10.13193/j.issn.1673-7717.2020.02.062.
- [171] 刘俊. 沙库巴曲缬沙坦联合参松养心胶囊治疗阵发性房颤伴慢性心力衰竭的临床疗效[J]. 中国临床药学杂志, 2021, 30 (02): 91-94. DOI: 10.19577/j.1007-4406.2021.02.003.
- [172] 金壹伍,金振一,马兰,等.美托洛尔联合参松养心胶囊对阵发性心房颤动患者P波离散度和血浆高敏 C-反应蛋白的影响[J].中国循环杂志,2012,27 (05):353-356.
- [173] Zhou T, Gong P, Xu M, et al. Efficacy of Shensong Yangxin capsule combined with dronedarone in paroxysmal atrial fibrillation after ablation[J]. Medicine, 2024, 103 (17): e37918. DOI: 10.1097/md.000000000037918.
- [174] Huang H, Liu Y, Shuai W, et al. Atrial tachyarrhythmia prevention by Shensong Yangxin after catheter ablation for persistent atrial fibrillation: the SS-AFRF trial[J]. Eur Heart J, 2024, 45 (40): 4305-4314. DOI: 10.1093/eurheartj/ehae532.
- [175] 张国伟, 陈守强, 张梦贺, 等. 参松养心胶囊对持续性心房颤动经射频消融术后患者左心功能及生活质量的影响[J]. 疑难病杂志, 2023, 22 (01): 8-13+20.
- [176] 周纪宁, 钟典, 王芳, 等. 参松养心胶囊辅助治疗心房颤动射频消融术后早期复发 60 例[J]. 医药导报, 2019, 38 (08): 1022-1025.
- [177] 于祝先, 刘东彦. 参松养心胶囊对持续性心房颤动患者复律后血浆超敏 C 反应蛋白和 N-末端 脑 钠 肽 前 体 水 平 的 影 响 [J]. 中 国 基 层 医 药, 2014, 21 (11): 1670-1672. DOI: 10.3760/cma.j.issn.1008-6706.2014.11.030.
- [178] 卓朝贵, 王顺, 张楷, 等. 参松养心胶囊对心房颤动射频消融术后复发的预防作用[J]. 疑难病杂志, 2017, 16 (03): 293-296+301.
- [179] Hood W B, Jr., Dans A L, Guyatt G H, et al. Digitalis for treatment of heart failure in patients in sinus rhythm[J]. Cochrane Database Syst Rev, 2014, 2014 (4): Cd002901. DOI: 10.1002/14651858.CD002901.pub3.
- [180] 官佳佳, 陈飞, 吴伽勒, 等. 芪苈强心胶囊改善糖尿病心力衰竭大鼠心功能及血管内皮功能实验研究[]. 浙江中西医结合杂志, 2014, 24 (08): 669-672.
- [181] Liang T, Zhang Y, Yin S, et al. Cardio-protecteffect of qiliqiangxin capsule on left ventricular remodeling, dysfunction and apoptosis in heart failure rats after chronic myocardial infarction[J].

 Am J Transl Res, 2016 (5): 2047-58.
- [182] 常丽萍. 芪苈强心胶囊治疗慢性心力衰竭的作用机理及代谢组学研究[D].河北: 河北医科大学,2017.
- [183] Cui X, Zhang J, Li Y, et al. Effects of Qili Qiangxin Capsule on AQP2, V2R, and AT1R in Rats with Chronic Heart Failure[J]. Evid Based Complement Alternat Med, 2015, 2015: 639450. DOI: 10.1155/2015/639450.
- [184] 马柳一, 尹玉洁, 张军芳, 等. 芪苈强心胶囊对慢性心衰大鼠下丘脑室旁核 RAS 系统及交感神经系统的影响[[]. 中国药理学通报, 2016, 32 (04): 575-580.
- [185] 秘红英, 郎艳松, 唐思文, 等. 经侧脑室注射芪苈强心胶囊对慢性心衰大鼠的影响[J]. 中药药理与临床, 2014, 30 (05): 128-131. DOI: 10.13412/j.cnki.zyyl.2014.05.041.
- [186] 白玲, 王军, 刘平, 等. 芪苈强心胶囊与美托洛尔对心力衰竭大鼠心功能及 BNP 影响的对

- 比研究[J]. 中国循证心血管医学杂志, 2014, 6 (04): 408-410.
- [187] 秘红英. 慢性充血性心力衰竭大鼠下丘脑室旁核 CRH 神经元激活相关机制及芪苈强心胶 囊干预研究[D].河北: 河北医科大学,2015.
- [188] Han A, Lu Y, Zheng Q, et al. Qiliqiangxin Attenuates Cardiac Remodeling via Inhibition of TGF-β1/Smad3 and NF-κB Signaling Pathways in a Rat Model of Myocardial Infarction[J]. Cell Physiol Biochem, 2018, 45 (5): 1797-1806. DOI: 10.1159/000487871.
- [189] Xiao H, Song Y, Li Y, et al. Qiliqiangxin regulates the balance between tumor necrosis factor-alpha and interleukin-10 and improves cardiac function in rats with myocardial infarction[J]. Cell Immunol, 2009, 260 (1): 51-5. DOI: 10.1016/j.cellimm.2009.09.001.
- [190] Liao Y H, Yuan J, Jin X J, et al. Qiliqiangxin Alleviates Imbalance of Inflammatory Cytokines in Patients with Dilated Cardiomyopathy: A Randomized Controlled Trial[J]. Curr Med Sci, 2024, 44 (6): 1081-1090. DOI: 10.1007/s11596-024-2916-9.
- [191] 黄政, 方存明, 马小林, 等. 芪苈强心胶囊通过TLR4/NF-κB通路减轻心力衰竭大鼠心肌炎性反应的研究[J]. 重庆医学, 2020, 49 (02): 183-187.
- [192] Hao J M, Sun P, Zeng Y, et al. Qiliqiangxin capsule improves cardiac remodeling in rats with DOCA-salt-induced diastolic dysfunction[J]. Eur Rev Med Pharmacol Sci, 2023, 27 (15): 7264-7275. DOI: 10.26355/eurrev_202308_33298.
- [193] Lu Y, Xiang M, Xin L, et al. Qiliqiangxin Modulates the Gut Microbiota and NLRP3 Inflammasome to Protect Against Ventricular Remodeling in Heart Failure[J]. Front Pharmacol, 2022, 13: 905424. DOI: 10.3389/fphar.2022.905424.
- [194] Zhao Q, Li H, Chang L, et al. Qiliqiangxin Attenuates Oxidative Stress-Induced Mitochondrion-Dependent Apoptosis in Cardiomyocytes via PI3K/AKT/GSK3β Signaling Pathway[J]. Biol Pharm Bull, 2019, 42 (8): 1310-1321. DOI: 10.1248/bpb.b19-00050.
- [195] Zhou J, Jiang K, Ding X, et al. Qiliqiangxin inhibits angiotensin II-induced transdifferentiation of rat cardiac fibroblasts through suppressing interleukin-6[J]. J Cell Mol Med, 2015, 19 (5): 1114-21. DOI: 10.1111/jcmm.12512.
- [196] 孙许涛, 钟晴, 张蓉, 等. 芪苈强心胶囊抑制阿霉素诱导的心肌成纤维细胞活化的作用机制研究[]]. 中医药学报, 2023, 51 (12): 22-28. DOI: 10.19664/j.cnki.1002-2392.230251.
- [197] 纪晓迪, 吴爱明, 吕梦, 等. 基于 miRNA-133a/TGF-β1/Smads 信号通路探讨芪苈强心胶囊对心肌梗死大鼠心肌纤维化的作用机制[J]. 海南医学院学报, 2022, 28 (21): 1608-1613. DOI: 10.13210/j.cnki.jhmu.20220331.002.
- [198] Sun X, Chen G, Xie Y, et al. Qiliqiangxin improves cardiac function and attenuates cardiac remodelling in doxorubicin-induced heart failure rats[J]. Pharm Biol, 2020, 58 (1): 417-426. DOI: 10.1080/13880209.2020.1761403.
- [199] Lin S, Wu X, Tao L, et al. The Metabolic Effects of Traditional Chinese Medication Qiliqiangxin on H9C2 Cardiomyocytes[J]. Cell Physiol Biochem, 2015, 37 (6): 2246-56. DOI: 10.1159/000438580.
- [200] Gao R R, Wu X D, Jiang H M, et al. Traditional Chinese medicine Qiliqiangxin attenuates phenylephrine-induced cardiac hypertrophy via upregulating PPARy and PGC-1a[J]. Ann Transl

- Med, 2018, 6 (8): 153. DOI: 10.21037/atm.2018.04.14.
- [201] Wang Y, Fu M, Wang J, et al. Qiliqiangxin Improves Cardiac Function through Regulating Energy Metabolism via HIF- 1α -Dependent and Independent Mechanisms in Heart Failure Rats after Acute Myocardial Infarction[J]. Biomed Res Int, 2020, 2020: 1276195. DOI: 10.1155/2020/1276195.
- [202] Cheng W, Wang L, Yang T, et al. Qiliqiangxin Capsules Optimize Cardiac Metabolism Flexibility in Rats With Heart Failure After Myocardial Infarction[J]. Front Physiol, 2020, 11: 805. DOI: 10.3389/fphys.2020.00805.
- [203] Zhang J, Wei C, Wang H, et al. Protective effect of qiliqiangxin capsule on energy metabolism and myocardial mitochondria in pressure overload heart failure rats[J]. Evid Based Complement Alternat Med, 2013, 2013: 378298. DOI: 10.1155/2013/378298.
- [204] Tao L, Shen S, Fu S, et al. Traditional Chinese Medication Qiliqiangxin attenuates cardiac remodeling after acute myocardial infarction in mice[J]. Sci Rep, 2015, 5: 8374. DOI: 10.1038/srep08374.
- [205] 张军芳, 唐思文, 王宏涛, 等. 芪苈强心胶囊对压力超负荷心力衰竭大鼠内皮损伤及能量代谢的影响[J]. 中医杂志, 2013, 54 (14): 1221-1224+1229. DOI: 10.13288/j.11-2166/r.2013.14.022.
- [206] Li F, Wang J, Song Y, et al. Qiliqiangxin alleviates Ang II-induced CMECs apoptosis by downregulating autophagy via the ErbB2-AKT-FoxO3a axis[J]. Life Sci, 2021, 273: 119239. DOI: 10.1016/j.lfs.2021.119239.
- [207] Wang J, Zhou J, Wang Y, et al. Qiliqiangxin protects against anoxic injury in cardiac microvascular endothelial cells via NRG-1/ErbB-PI3K/Akt/mTOR pathway[J]. J Cell Mol Med, 2017, 21 (9): 1905-1914. DOI: 10.1111/jcmm.13111.
- [208] Wang Y, Zhang J, Fu M, et al. Qiliqiangxin Prescription Promotes Angiogenesis of Hypoxic Primary Rat Cardiac Microvascular Endothelial Cells via Regulating miR-21 Signaling[J]. Curr Pharm Des, 2021, 27 (26): 2966-2974. DOI: 10.2174/1381612826666201005152709.
- [209] Wang J, Zhou J, Ding X, et al. Qiliqiangxin improves cardiac function and attenuates cardiac remodeling in rats with experimental myocardial infarction[J]. Int J Clin Exp Pathol, 2015 (6): 6596-606.
- [210] Zou Y, Lin L, Ye Y, et al. Qiliqiangxin inhibits the development of cardiac hypertrophy, remodeling, and dysfunction during 4 weeks of pressure overload in mice[J]. J Cardiovasc Pharmacol, 2012, 59 (3): 268-80. DOI: 10.1097/FJC.0b013e31823f888f.
- [211] Zhang J, Huang M, Shen S, et al. Qiliqiangxin attenuates isoproterenol-induced cardiac remodeling in mice[J]. Am J Transl Res, 2017 (12): 5585-5593.
- [212] Luo X, Zhou J, Wang Z, et al. An inhibitor role of Nrf2 in the regulation of myocardial senescence and dysfunction after myocardial infarction[J]. Life Sci, 2020, 259: 118199. DOI: 10.1016/j.lfs.2020.118199.
- [213] Ji X D, Yang D, Cui X Y, et al. Mechanism of Qili Qiangxin Capsule for Heart Failure Based on miR133a-Endoplasmic Reticulum Stress[J]. Chin J Integr Med, 2024, 30 (5): 398-407. DOI:

10.1007/s11655-024-3654-3.

- [214] Zhou J, Wang Z, He Y, et al. Qiliqiangxin reduced cardiomyocytes apotosis and improved heart function in infarcted heart through Pink1/Parkin -mediated mitochondrial autophagy[J]. BMC Complement Med Ther, 2020, 20 (1): 203. DOI: 10.1186/s12906-020-02992-7.
- [215] Fan C L, Cai W J, Ye M N, et al. Qili Qiangxin, a compound herbal medicine formula, alleviates hypoxia-reoxygenation-induced apoptotic and autophagic cell death via suppression of ROS/AMPK/mTOR pathway in vitro[J]. J Integr Med, 2022, 20 (4): 365-375. DOI: 10.1016/j.joim.2022.04.005.
- [216] Qin Y, Lv C, Zhang X, et al. Protective Effect of Qiliqiangxin against Doxorubicin-Induced Cardiomyopathy by Suppressing Excessive Autophagy and Apoptosis[J]. Cardiovasc Ther, 2022, 2022: 9926635. DOI: 10.1155/2022/9926635.
- [217] Fan C, Tang X, Ye M, et al. Qi-Li-Qiang-Xin Alleviates Isoproterenol-Induced Myocardial Injury by Inhibiting Excessive Autophagy via Activating AKT/mTOR Pathway[J]. Front Pharmacol, 2019, 10: 1329. DOI: 10.3389/fphar.2019.01329.
- [218] Zhou Y, Fang H, Lin S, et al. Qiliqiangxin Protects Against Cardiac Ischemia-Reperfusion Injury via Activation of the mTOR Pathway[J]. Cell Physiol Biochem, 2015, 37 (2): 454-64. DOI: 10.1159/000430368.
- [219] Cheang I, Yao W, Zhou Y, et al. The traditional Chinese medicine Qiliqiangxin in heart failure with reduced ejection fraction: a randomized, double-blind, placebo-controlled trial[J]. Nat Med, 2024, 30 (8): 2295-2302. DOI: 10.1038/s41591-024-03169-2.
- [220] Li X, Zhang J, Huang J, et al. A multicenter, randomized, double-blind, parallel-group, placebo-controlled study of the effects of qili qiangxin capsules in patients with chronic heart failure[J]. J Am Coll Cardiol, 2013, 62 (12): 1065-1072. DOI: 10.1016/j.jacc.2013.05.035.
- [221] 毛天诗, 李宇轩, 庞彦廷, 等. 芪苈强心治疗慢性心力衰竭的 meta 分析[J]. 临床心血管病杂志, 2024, 40 (12): 998-1005. DOI: 10.13201/j.issn.1001-1439.2024.12.010.
- [222] 李彦霞, 贾振华, 张鑫月. 芪苈强心胶囊对慢性舒张性心力衰竭患者心脏舒张功能的影响 [J]. 疑难病杂志, 2013, 12 (04): 261-263.
- [223] 巩贵宏, 张海波, 杨建涛, 等. 芪苈强心胶囊联合缬沙坦治疗舒张性心力衰竭的疗效观察 [J]. 中 西 医 结 合 心 血 管 病 电 子 杂 志 , 2015, 3 (10): 128-129. DOI: 10.16282/j.cnki.cn11-9336/r.2015.10.077.
- [224] 李三军, 余松平, 胡林, 等. 芪苈强心胶囊联合西药治疗舒张性心力衰竭临床研究[J]. 实用中医药杂志, 2023, 39 (12): 2416-2418.
- [225] 冯英, 蒋玙姝, 何倩雯, 等. 芪苈强心胶囊治疗舒张性心力衰竭的疗效及安全性的 Meta 分析[J]. 武汉大学学报(医学版), 2015, 36 (06): 992-999. DOI: 10.14188/j.1671-8852.2015.06.037.

Preface

Primary Drafting Unit: Hebei Luo-study Innovation Medical Research Institute.

Participating Drafting Units: Shanghai Fudan University ZhongShan Hospital, Dongzhimen Hospital of Beijing University of Chinese Medicine, Renmin Hospital of Wuhan University.

Primary Drafters: Qian Juying, Lin Qian, Huang Congxin, Jia Zhenhua.

Participating Drafters (In alphabetical order by surname):

China: An Dongqing, Bai Ling, Bai Wen, Bai Yongping, Bu Peili, Cao Kejiang, Chang Liping, Chen Huisheng, Chen Liming, Chen Qiu, Chen Yangmei, Cong Hongliang, Ding Chunhua, Dong Qiang, Dong Yugang, Dong Yanhong, Fan Yuhua, Gao Chuanyu, Gao Huailin, Ge Junbo, Gong Lihong, Gu Wenping, Han Yan, Hu Wenli, Huang Congxin, Huang He, Huang Yonghua, Huo Yong, Ji Xiaoping, Kong Hong, Li Bingong, Li Ping, Li Weimin, Li Xinli, Lian Fengmei, Liang Chun, Liang Zhigang, Liao Dening, Liao Yuhua, Lin Qian, Liu Chen, Liu Gangqiong, Liu Haixia, Liu Jianping, Liu Qiming, Liu Qiang, Liu Tong, Liu Yi, Liu Ying, Lu Hao, Lu Zhengqi, Luo Suxin, Mao Wei, Ni Qing, Peng Xiaoping, Pu Jielin, Qi Xiaoyong, Qian Juying, Qian Qiuhai, Qian Xiaoxian, Qin Guijun, Qiu Feng, Qu Qiumin, Ran Xingwu, Shen Deliang, Song Bo, Song Haiqing, Sun Jian, Sun Zhijun, Tang Junnan, Tao Jianhong, Tian Zhuang, Wang Cuilan, Wang Dandan, Wang Jiang, Wang Liansheng, Wang Xian, Wang Yutang, Wu Z<mark>onggui, Xu</mark> Huipu, Xu Jian, Yan Ji, Yang Jiefu, Yang Weimin, Yang Xinchun, Yang Yuejin, Yin Yuehui, You Beian, Yuan Zuyi, Yuan Haitao, Zhang Bo, Zhang Jiewen, Zhang Jinying, Zhang Lihui, Zhang Wenzhong, Zhang Xingang, Zhang Yanzhou, Zhang Yun, Zhang Zixin, Zhao Chuansheng, Zhao Xingquan, Zheng Liangrong, Zheng Qiangsun, Zhong Jingquan, Zhou Jingmin, Zhou Shuxian, Zhou Yafeng, Zhu Mingjun, Zou Jiangang.

United States: Yang Guanhu.

United Kingdom: Chen Zanyu, Zhang Hongyi.

Canada: Wu Binjiang.
Thailand: Cao Zuojun.

The drafting process of this document complies with the SCM1.1-2021 "Guidelines for Standardization Work Part 1: Standard Development, Revision, and Release" issued by the World Federation of Chinese Medicine Societies.

This document is published by the World Federation of Chinese Medicine Societies (WFCMS), and the copyright is owned by the WFCMS.

Introduction

Over the past 30 years, cardiovascular diseases (CVDs) have remained a major global cause of death, posing a significant public health challenge [1,2]. The "Healthy China 2030" initiative [3] sets a goal to reduce premature mortality from major chronic diseases, including CVDs. Achieving this goal requires the collaboration of multiple disciplines, including Western medicine and traditional Chinese medicine (TCM), to maximally curb the onset and progression of CVDs. In the 1990s, American cardiologist Professor Braunwald and Professor Dzau introduced the concept of the "cardiovascular continuum" [4], which brought a paradigm shift in the approach to comprehensive CVD intervention and challenged the traditional single-target, single-factor, and single-mechanistic drug treatments^[5-9]. This concept aligns well with the holistic and systemic theoretical characteristics of TCM. In recent years, significant breakthroughs have been made in the prevention and treatment of CVDs using TCM-based Luobing theory and its guiding principles for promoting blood circulation and removing stasis^[10]. To further promote the integration and innovation of TCM and modern/Western medicine, and to provide a clinical management with TCM characteristics for systematically intervening in the cardiovascular continuum. This expert consensus aim to review the systematic intervention of the cardiovascular continuum using Luobing theory-based Chinese medicine formula.

0.1 The Concept of the Cardiovascular Continuum and Its Significance in Disease Prevention and Treatment

"Cardiovascular continuum" refers to the entire process of CVDs, starting from the accumulation of high-risk factors leading to atherosclerosis, vulnerable plaque rupture causing myocardial infarction, arrhythmias, heart failure (HF), and ultimately death. This process is characterized by multiple factors, interconnected links, progressive development, sudden events, and severe consequences [5-9]. The introduction of this concept reflects the systemic nature and complexity of CVDs, shifting the focus from single-factor, single-approach, and single-target interventions to a holistic, continuous, dynamic, and comprehensive intervention strategy. By targeting key pathological links in the cardiovascular continuum, such as high-risk factors, vulnerable coronary plaques, myocardial protection after reperfusion therapy for acute myocardial infarction, arrhythmias, and chronic HF, this approach aims to address current therapeutic

bottlenecks, control upstream risk factors, and prevent the progression of disease downstream. This forms a systematic intervention strategy that integrates prevention with treatment, fundamentally blocking the cardiovascular continuum and reducing the incidence and mortality of CVDs.

0.2 The Proposal of the *Mai Luo Theory* and Its Significance in Preventing the Cardiovascular Continuum

The *Mai Luo Theory* is an original theory established by inheriting and developing the TCM theory of blood vessels. Although TCM has documented theories related to vascular diseases over its 2,000-year history, the lack of systematic development of the blood vessel and *Mai Luo Theory* has hindered their potential in guiding the prevention and treatment of vascular diseases. Under the guidance of the holistic view of TCM, Academician Wu Yiling further developed the *Mai Luo Theory*. This theory emphasizes that from the early stages of the cardiovascular continuum to the occurrence of severe cerebral-cardiovascular events, microcirculation dysfunction plays a critical role.

From a TCM perspective, the *Mai Luo Theory* not only focuses on the surface symptoms but also addresses the underlying microcirculation dysfunction and endothelial dysfunction, thereby alleviating issues in medium and large vessels as well as the myocardium. The *Mai Luo Theory* advocates for improving microcirculation at its source, aligning with the concept of the cardiovascular continuum. The research scope of the *Mai Luo Theory* includes chest pain, stroke, palpitations, and heart edema from the prospective of TCM, covering major diseases in the cardiovascular continuum such as cardiovascular and cerebrovascular diseases, arrhythmias, and HF. Guided by the *Mai Luo Theory*, the holistic and systemic characteristics of TCM can be fully utilized to achieve systematic intervention in the cardiovascular continuum [11,12].

0.3 The Theoretical Basis of Mai Luo Theory-Guided Drugs in Preventing the Cardiovascular Continuum

0.3.1 The Core Concept of Nutrient and Defense (Ying-Wei, 营卫) in Mai Luo Theory Reveals the Development and Medication Mechanism of the Cardiovascular Continuum

Based on the core content of the *Mai Luo Theory*—the Nutrient and Defense Concept—the development of the cardiovascular continuum, characterized by "Coagulation (凝)" \rightarrow "Obstruction (壅)" \rightarrow "Blockage (塞)" \rightarrow "Non-circulation (不通)" is highly correlated with key pathological links such as the accumulation

of high-risk factors, vulnerable arterial plaques, acute myocardial infarction, arrhythmias, and chronic HF. Through data mining of ancient and modern medical records, the characteristics of the cardiovascular continuum are revealed: abnormalities in the "collateral circulation and biochemical interactions" of Nutrient and Defense are the initiating factors and persist throughout the process, leading to abnormal distribution and metabolism of body fluids and blood, and the mutual influence of dampness, phlegm, stasis, and water. This forms the developmental process and constituting a continuous pathological process from collateral dysfunction to structural damage and from primary lesions to secondary myocardial damage in the cardiovascular continuum.

Based on the symptom types, pathogenesis, and medication rules of "regulating Ying-Wei and body fluids" identified through data mining, a medication plan for systematically intervening in the cardiovascular continuum using collateral drugs has been established: the "strengthening the spleen and transporting body fluids (健脾运津)" treatment method and its representative drug, Jinlida Granules, are used to intervene in the "coagulation" stage—the accumulation of high-risk factors leading to blood coagulation; the "searching and dredging (搜剔疏通)" treatment method and its representative drug, Tongxinluo Capsules, are used to intervene in the stage—vulnerable coronary plaques and the "Blockage" stage—acute myocardial infarction and cerebral infarction; the "warming, clearing, tonifying, and dredging (温清补通)" treatment method and its representative drug, Shensong Yangxin Capsules, are used to intervene in the "Non-circulation" stage—arrhythmias; and the "simultaneous regulation of Qi, blood, and water (气血水同治分消)" treatment method and its representative drug, Qiliqiangxin Capsules, are used to intervene in the "Non-circulation" stage—chronic HF.

This forms a set of intervention drugs targeting the core pathogenesis of the TCM transmission pattern of "Coagulation (&)" \rightarrow "Obstruction (@)" \rightarrow "Blockage (@2)" \rightarrow "Non-circulation (不通)" in the cardiovascular continuum [13-15]

0.3.2 The Nutrient and Defense Concept in Mai Luo Theory Guides the Proposal of a Systematic Intervention Strategy for the Cardiovascular Continuum

The proposal of this new systematic intervention strategy draws on the TCM concept of "preventive treatment of disease (治未病)." The Yellow Emperor's Classic of Internal Medicine first introduced the concept of "preventive treatment of disease," and Zhang Zhongjing of the Eastern Han Dynasty further developed this concept, emphasizing "preventing disease progression (防传变)." Based on

the TCM concepts of "preventive treatment of disease" and "preventing disease progression," a new perspective of "treating the current disease and preventing future disease (治本病、防未病)"—preventing upstream factors, treating current diseases, and controlling downstream progression—has been proposed for the systematic intervention of the cardiovascular continuum. In-depth research on the "regulating Nutrient and Defense" treatment method and Luobing-based medicines demonstrate their role this process. This has significant theoretical value in guiding the holistic, continuous, dynamic, and comprehensive intervention of the cardiovascular continuum [14].

In the past three decades of clinical practice, the primary, secondary, and tertiary prevention concepts and measures proposed by modern/Western medicine have played a significant role in the prevention and treatment of CVDs. However, due to the systemic nature and complexity of CVDs, single-factor, single-mechanistic, and single-target interventions face challenges.

- High-risk factors for CVDs often cluster in individuals and involve multiple metabolic abnormalities, significantly increasing the risk of atherosclerosis
- The residual inflammatory risk of vulnerable plaques significantly increases cardiovascular events, and lipid-lowering combined with anti-inflammatory therapy provides greater benefits for high-risk patients with coronary artery disease (CAD) [17-19]. In the era of reperfusion therapy, no-reflow/slow-flow and ischemia-reperfusion injury in acute myocardial infarction severely affect prognosis [20,21].
- Compared to the rapid progress in catheter ablation, antiarrhythmic drug therapy, which emphasizes suppression and counteraction, has not seen significant breakthroughs, with a recurrence rate of up to 30% after catheter ablation for persistent atrial fibrillation [22-24].
- The 5-year mortality rate for chronic HF remains nearly 50% despite guideline-directed medical treatment, facing the need for further updates in treatment concepts over the past century [25,26].

The concept of the "cardiovascular continuum" suggests that solving these issues requires a shift toward holistic and systemic thinking, which aligns with the theoretical characteristics of the *Mai Luo Theory* systematically constructed based on the inheritance of TCM blood vessel theory over 2,000 years. This also lays the theoretical foundation for the collateral drugs developed under the guidance of the collateral disease theory to address these bottleneck issues and achieve systematic intervention.

The research methods and technical roadmap of this document are detailed in **Annex A**, and the clinical research literature screening criteria and evidence

levels are provided in Annex B.

The issuing organization of this document draws attention to the fact that compliance with this document may involve the use of patents related to *Luobing theory*-based drug/formula.

The issuing organization takes no position on the authenticity, validity, or scope of these patents.

The patent holder has committed to the issuing organization that they are willing to negotiate patent licensing agreements with any applicant under reasonable and non-discriminatory terms and conditions.

The patent holder's statement has been filed with the issuing organization. Relevant information can be obtained through the following contact details:

Patent Holder: Wu Yiling

Address: No. 238 Tianshan Street, High-tech Zone, Shijiazhuang City, Hebei Province.

Please note that, in addition to the aforementioned patent, certain contents of this document may still involve patents. The issuing organization does not assume responsibility for identifying patents.

Expert consensus on the intervention of the cardiovascular continuum by Luobing theory-based Chinese medicine formula

1 Scope

This document describes the mechanism of action and clinical application recommendations for a series of Luobing theory-based drugs (including Jinlida Granules, Tongxinluo Capsules, Shensong Yangxin Capsules, and Qiliqiangxin Capsules) for systemic intervention in cardiovascular continuum (such as diabetes, stroke, CAD, arrhythmias, and HF).

This document is intended for use by clinicians in endocrinology, cardiology, neurology, and related specialties in the treatment of conditions such as diabetes, stroke, CAD, arrhythmias, and HF.

2 Normative References

The contents of the following documents/articles, through normative references, constitute essential provisions of this document. For dated references, only the version corresponding to that date applies to this document. For undated references, the latest version (including all amendments) applies to this document.

Chinese Society of Cardiology, Editorial Board of Chinese Journal of Cardiology. (2018). Guidelines for the Diagnosis and Treatment of Stable Coronary Artery Disease. Chinese Journal of Cardiology, 46(9), 680-694.

Chinese Society of Cardiology, Editorial Board of Chinese Journal of Cardiology. (2019). Guidelines for the Diagnosis and Treatment of Non-ST Segment Elevation Acute Coronary Syndrome. Chinese Journal of Cardiology, 47(5), 347-363.

Chinese Society of Cardiology, Editorial Board of Chinese Journal of Cardiology. (2022). Guidelines for Percutaneous Coronary Intervention in China (2022). Chinese Journal of Cardiology, 50(4), 315-374.

Arnett, D.K., Blumenthal, R.S., Albert, M.A., Buroker, A.B., Goldberger, Z.D., Hahn, E.J., & Writing Committee Members. (2019). 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice

Guidelines. Journal of the American College of Cardiology, 74(10), e177-e232.

Byrne, R.A., Rossello, X., Coughlan, J.J., Barbato, E., Berry, C., Chieffo, A., & ESC Scientific Document Group. (2023). 2023 ESC Guidelines for the Management of Acute Coronary Syndromes. European Heart Journal, 44(38), 3720-3826.

Virani, S.S., Newby, L.K., Arnold, S.V., Bittner, V., Brewer, L.C., Demeter, S.H., & Writing Committee Members. (2023). 2023 AHA/ACC/ACCP/ASPC/NLA/PCNA Guideline for the Management of Patients With Chronic Coronary Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. Journal of the American College of Cardiology, 82(9), 833-955.

Huo Xiaochuan, Gao Feng. (2023). Chinese Guidelines for Endovascular Treatment of Acute Ischemic Stroke 2023. Chinese Journal of Stroke, 18(06), 684-711.

Wang Dandan, Dong Qiang, Zhao Xingquan. (2022). Expert Recommendations on the Clinical Application of Tongxinluo Capsules in Atherosclerotic Cerebrovascular Diseases. Chinese Journal of Clinical Neurosciences, 30(05), 481-486.

American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. (2022). 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines.

European Society of Cardiology. (2023). 2023 Focused Update of the 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure.

Chinese Society of Cardiology, Chinese College of Cardiovascular Physicians, Chinese Association of Heart Failure Specialists, et al. (2024). Chinese Guidelines for the Diagnosis and Treatment of Heart Failure 2024. Chinese Journal of Cardiology, 52(03), 235-275. DOI: 10.3760/cmaj.cn112148-20231101-00405.

3 Terms and definitions

The following terms and definitions apply to this document.

3.1

Diabetes mellitus

a metabolic disease characterized by elevated blood glucose levels due to

absolute or relative insulin deficiency (insulin secretion defect) and reduced sensitivity of target tissues or organs to insulin (insulin action defect), which may be accompanied by dyslipidemia and other features.

Note: Diabetes mellitus falls under the categories of "Xiaodan" or "Xiaoke" in Chinese medicine.

[Source: SCM 18-2017, 3.3]

3.2

Coronary artery disease (CAD)

a heart disease caused by impaired blood circulation to the heart due to coronary artery atherosclerosis, leading to myocardial ischemia and hypoxia.

3.3

Ischemic stroke

a clinical syndrome characterized by rapid onset of neurological deficits due to ischemic and hypoxic necrosis of brain tissue caused by various cerebrovascular disorders that disrupt blood supply to the brain.

3.4

Atrial fibrillation (AF)

one of the most common arrhythmias, characterized by disordered atrial electrical activity and loss of effective atrial contraction, resulting in irregular ventricular rates and an increased risk of various complications.

3.5

Ventricular premature contraction (VPC)

ventricular pre-excitation

a common arrhythmia referring to a single or paired premature depolarization of the myocardium originating from sites below the bifurcation of the atrioventricular bundle.

3.6

Heart failure (HF)

a complex clinical syndrome caused by abnormal changes in cardiac structure and/or function due to various reasons, leading to impaired ventricular systolic and/or diastolic function.

[Source: SCM/TR 0008-2025, 3.1]

4 Luobing Theory-Based Medicine and Cardiovascular Continuum

4.1 Luobing Theory-Based Medicine

Luobing theory-based medicine developed under the guidance of the *Mai Luo Theory* in TCM include Jinlida Granules (JLD), Tongxinluo Capsules (TXL), Shensong Yangxin Capsules (SSYX), and Qiliqiangxin Capsules (QLQX). These drugs target different stages of the cardiovascular continuum.

JLD, based on the "strengthening the spleen and transporting body fluids (健脾运津)" treatment method, is used to intervene in the "Coagulation (凝)" stage—the accumulation of high-risk factors leading to blood coagulation at the source of the cardiovascular continuum.

TXL, using the "searching and dredging (搜剔疏通)" treatment method, intervenes in the "Obstruction (壅)" stage—vulnerable coronary plaques and the "Blockage (塞)" stage—acute myocardial infarction and cerebral infarction.

SSYX, employing the "warming, clearing, tonifying, and dredging (温清补通)" treatment method, intervenes in the "Non-circulation (不通)" stage—arrhythmias.

QLQX, based on the "simultaneous treatment of Qi, blood, and water (气血水同治分消)" medication principle, intervenes in the "Non-circulation (不通)" stage—chronic heart failure.

Together, these drugs form a set of interventions targeting the core pathogenesis of the TCM transmission pattern of "Coagulation (凝)" \rightarrow "Obstruction (壅)" \rightarrow "Blockage (塞)" \rightarrow "Non-circulation (不通)" in the cardiovascular continuum [13-15].

4.2 Luobing Theory-Based Medicine and Diabetes Mellitus/Prediabetes

4.2.1 Formulation Characteristics of JLD - "Strengthening the Spleen and Transporting Body Fluids"

for lifting spleen Qi. Combined with Salvia miltiorrhiza (丹参) to tonify meridians, the formula exerts the effects of "strengthening the spleen and transporting body fluids," providing a formulation basis for its role in the comprehensive intervention of diabetes [12].

4.2.2 Mechanisms of JLD in Improving Type 2 Diabetes Mellitus

4.2.2.1 Improving Insulin Sensitivity

Antioxidant Effects: Studies by Song Guangyao et al. ^[27-30] suggested that JLD upregulates the expression of silent information regulator 3 (SIRT3), enhances the activity of antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and reduces levels of reactive oxygen species (ROS) and malondialdehyde (MDA), thereby alleviating oxidative stress interference with insulin signaling.

Anti-inflammatory Effects: Research by Tang Yange et al. [31] showed that JLD effectively inhibits the activation of the nuclear factor kappa-B (NF- κ B) signaling pathway, reduces the release of pro-inflammatory factors such as interleukin-1 β (IL-1 β) and IL-6, and alleviates insulin resistance caused by chronic low-grade inflammation, thereby improving insulin sensitivity and regulating blood glucose.

Relieving Lipotoxicity: Studies by Song Guangyao et al. [32] revealed that JLD activates AMP-activated protein kinase (AMPK), promotes the phosphorylation of acetyl-CoA carboxylase (ACC), and enhances the expression of hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL), thereby improving fatty acid oxidation efficiency. Research by Zhang Huixin et al. [33] indicated that JLD downregulates the expression of fatty acid translocase (FAT/CD36), reduces the uptake of free fatty acids, and decreases the deposition of triglycerides and non-esterified fatty acids in skeletal muscle, alleviating lipotoxicity and improving insulin sensitivity.

4.2.2.2 Protection of islet β-cell

Anti- β -Cell Apoptosis: Studies by Le Ling et al. [34,35] demonstrated that JLD inhibits Smad2/3 phosphorylation, upregulates the expression of anti-apoptotic proteins such as B-cell lymphoma-2 (Bcl-2), and downregulates pro-apoptotic proteins such as caspase-3 and Bcl-2-associated X protein (Bax), significantly reducing high glucose-induced β -cell apoptosis. Additionally, it improves the function of pancreatic microvascular endothelial cells, optimizes the survival environment of pancreatic β -cells, and protects pancreatic function.

4.2.2.3 Multi-Pathway Synergistic Regulation of Glucose and Lipid Metabolism Network

Research by Gao Huailin et al. [36-45] showed that JLD activates the fibroblast growth factor 21 (FGF21)/AMPK signaling pathway, inhibits the expression of hepatic diacylglycerol acyltransferase 1 (DGAT1), and reduces triglyceride synthesis and accumulation. It also upregulates brown fat thermogenesis-related genes such as uncoupling protein 1 (UCP1) and PR domain-containing 16 (PRDM16), promoting fatty acid oxidation and energy expenditure, and improving the metabolic state of the liver and adipose tissue.

Furthermore, JLD upregulates the expression of peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1 α) and its downstream molecules, promoting mitochondrial biogenesis and oxidative phosphorylation. By inhibiting mammalian target of rapamycin (mTOR), activating tuberous sclerosis complex 1 (TSC1), and upregulating microtubule-associated protein 1 light chain 3 (LC3-II), it induces autophagy, clears excess lipids, and further improves the metabolic microenvironment.

In terms of insulin signaling, JLD synergistically activates the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway, upregulates the expression of insulin receptor (IR), insulin receptor substrate-1 (IRS-1), and glucose transporter type 4 (GLUT4), enhancing cellular response to insulin and glucose uptake. It also inhibits the activation of negative regulatory signals such as c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38MAPK), preventing signal pathway blockage and comprehensively improving insulin efficiency.

4.2.2.4 Improving Microcirculation

Studies by Ding Yingjun et al. [46,47] indicated that JLD combined with TXL significantly improves the viability of renal microvascular endothelial cells under high glucose conditions, reduces apoptosis, and lowers ROS levels. It also significantly inhibits the expression of phosphorylated Smad2/3 and upregulates Smad7 expression. Additionally, the combined intervention effectively reduces the generation of type IV collagen, alleviates renal fibrosis, downregulates p-Akt and p-mTOR expression, inhibits mTOR pathway-mediated overexpression of vascular endothelial growth factor (VEGF), and improves abnormal vascular proliferation in renal tissue. Inhibition of the Akt/mTOR pathway also helps regulate metabolic stress in tissues, reducing renal damage associated with diabetes-related metabolic disorders.

4.2.3 Evidence-based practice of JLD in Type 2 Diabetes and Prediabetes

4.2.3.1 Prediabetes

The FOCUS study [48] was a multicenter, randomized, double-blind, placebo-controlled clinical trial involving 889 individuals with impaired glucose tolerance and multiple metabolic abnormalities. Participants were randomly assigned to receive JLD (9 g/dose, three times daily [TID], orally) or placebo. The primary outcome was the incidence of diabetes (diagnosed by two consecutive oral glucose tolerance tests). Results showed:

- ① After a median follow-up of 2.2 years, the risk of developing diabetes in the JLD group was significantly lower than in the placebo group (Hazard Ratio [HR] = 0.59, 95% Confidence Interval [CI]: 0.46–0.74; P < 0.001).
- ② In terms of metabolic indicators, compared to the placebo group, the JLD group showed a reduction in waist circumference by 0.95 cm (95% CI: 0.36–1.55), fasting blood glucose by 3.8 mg/dL (95% CI: 2.2–5.6), 2-hour postprandial blood glucose by 9.2 mg/dL (95% CI: 5.4–13.0), glycated hemoglobin (HbA1c) by 0.20% (95% CI: 0.13%–0.27%), and improvement in the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) by 0.47 (95% CI: 0.12–0.83).
- ③ In terms of blood lipids, compared to the placebo group, the JLD group showed significant reductions in total cholesterol, low-density lipoprotein cholesterol (LDL-C), and triglyceride levels, while high-density lipoprotein cholesterol (HDL-C) levels increased.
- 4 After 24 months of follow-up, the ankle-brachial index and waist circumference in the JLD group were significantly improved compared to the placebo group.

4.2.3.2 Newly Diagnosed Type 2 Diabetes

A 16-week double-blind randomized controlled trial (RCT) [49] evaluated the effects of JLD on glycemic variability in patients with newly diagnosed type 2 diabetes mellitus (T2DM), including monotherapy and combination therapy with metformin. Participants were randomly divided into four groups: control group, JLD group, metformin group, and JLD combined with metformin group. Retrospective continuous glucose monitoring (CGM) was performed for three consecutive days, and HbA1c, TCM symptom scores, and CGM parameters (including glucose coefficient of variation, glucose standard deviation, and time in range [3.9–10.0 mmol/L]) were assessed before and after the trial. A total of

138 participants completed the study. Results showed: Compared to baseline, fasting blood glucose, 2-hour postprandial blood glucose, HbA1c, and TCM symptom scores decreased in all four groups, with the most significant reduction in the combination therapy group. In terms of CGM parameters, the time in range significantly improved in both the JLD group and metformin group (Jinlida group: 78.68 \pm 26.15 vs. 55.47 \pm 33.29; metformin group: 87.29 \pm 12.21 vs. 75.44 \pm 25.42; P < 0.01). Notably, only the JLD group showed a significant reduction in glucose standard deviation (1.57 \pm 0.61 vs. 1.96 \pm 0.95; P < 0.01). The study demonstrated that JLD effectively improves glycemic control and variability in newly diagnosed T2DM patients.

4.2.3.3 Poorly Controlled T2DM

A randomized, double-blind, placebo-controlled, multicenter study [50] included 186 T2DM patients. Participants were randomly assigned to receive JLD (9 g/dose, TID, orally) or placebo for 12 weeks. Both groups continued to take their original dose of metformin, which remained unchanged. Changes in HbA1c, fasting blood glucose, 2-hour postprandial blood glucose, weight, and body mass index (BMI) were assessed during the 12-week treatment period, while HOMA-IR and Homeostasis Model Assessment-β (HOMA-β) were calculated. Results: After 12 weeks of treatment, HbA1c decreased by 0.92 ± 1.09% in the JLD group and by $0.53 \pm 0.94\%$ in the placebo group (JLD group 95% CI: 0.69-1.14; placebo group 95% CI: 0.34–0.72). The difference in HbA1c reduction between the two groups was statistically significant (P < 0.01). Both fasting blood glucose and 2-hour postprandial blood glucose decreased in both groups compared to baseline, with statistically significant differences between the groups (both P < 0.01). The JLD group also showed improved β -cell function, with a significant increase in the HOMA- β index (P < 0.05). Changes in weight and BMI were not statistically significant.

4.2.3.4 Insulin Resistance in T2DM

A meta-analysis ^[51] including 15 RCT showed that JLD combined with other hypoglycemic drugs significantly improved glycemic control in T2DM patients after at least 12 weeks of treatment. Compared to the control group, the treatment group significantly reduced HbA1c (P < 0.001), fasting blood glucose (P < 0.001), and 2-hour postprandial blood glucose (P < 0.001). Additionally, the treatment group demonstrated greater ability to regulate HOMA-IR and HOMA- β , thereby increasing insulin sensitivity and improving insulin resistance.

Table 1 - Recommendations for Jinlida Granules (JLD) in the management

of Diabetes and Prediabetes

Recommendation	Class of Recommendation	Level of Evident
For patients with impaired glucose tolerance, JLD is recommended to be added to lifestyle interventions to reduce the risk of new-onset diabetes, improve glucose and lipid metabolism (including lowering fasting and postprandial blood glucose, HbA1c, increasing HDL-C levels, and reducing TG levels), and reduce waist circumference, BMI, and carotid intima-media thickness.	IIa	A
For newly diagnosed T2DM patients, JLD can be used alone or in combination with metformin to improve glycemic variability and increase time in the target glucose range.	IIa	В
For T2DM patients who do not achieve glycemic control with metformin monotherapy or other oral hypoglycemic agents, JLD is recommended to further reduce HbA1c and improve fasting and postprandial blood glucose.	IIa	A
For T2DM patients, JLD can be used alone or in combination with other hypoglycemic agents to improve body weight, increase insulin sensitivity, and alleviate insulin resistance.	IIa	A

Note: JLD, Jinlida granules; HbA1c, glycated hemoglobin; HDL-C, high-density lipoprotein cholesterol; TG, triglycerides; BMI, body mass index; T2DM, type 2 diabetes mellitus.

4.2.4 Safety of JLD

According to the China National Adverse Drug Reaction Monitoring System ^[52], as of March 2025, a total of 848 adverse drug reaction (ADR) reports related to JLD have been received, with a reporting rate of approximately 2.61‰, indicating that the incidence of adverse reactions is rare. The main adverse reactions include diarrhea, nausea, vomiting, abdominal distension, and rash.

4.3 Luobing Theory-Based Medicine and Ischemic Cardiovascular and Cerebrovascular Diseases

4.3.1 Formulation Characteristics of TXL —— The "Searching and Dredging"

Based on the syndrome characteristics and clinical manifestations of "obstruction" (vulnerable coronary plaques) and "blockage" (acute myocardial infarction and cerebral infarction), the therapeutic method of "searching, removing, and dredging" was established, with TXL as the intervention drug.

Targeting the common pathogenesis of qi stagnation, TXL uses ginseng (人参) and dalbergia wood (降香) to tonify deficiency, relieve stagnation, and regulate collateral qi. For blood stasis, it employs leech (水蛭) and ground beetle (土鳖虫) to remove stasis. For relieve vessel spasm, it uses scorpion (全蝎), centipede (蜈蚣), and cicada slough (蝉蜕) to dispelling wind and dredging meridians. This reflects the formulation characteristics of "searching, removing, and dredging," providing a basis for its comprehensive intervention in the prevention and treatment of coronary heart disease, angina pectoris, acute myocardial infarction, and cerebral infarction [12].

4.3.2 Mechanisms of TXL in Management of Ischemic Cardiovascular and Cerebrovascular Diseases

4.3.2.1 Protecting Endothelium and Improving Microcirculation

TXL achieves endothelial protection and microcirculation improvement through multi-target synergistic effects. Multiple studies by Wu et al.[53,54] have shown that TXL activates the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway, promoting phosphorylation of endothelial nitric oxide synthase (eNOS) at Ser1179 and Ser635 sites, enhancing eNOS activity, and upregulating vascular endothelial cadherin (VE-cadherin) and β-catenin expression, thereby effectively protecting myocardial microvascular endothelial structure. Chen et al. [55] found in an ischemia-reperfusion rat model that TXL alleviates endothelial cell damage and improves cardiac microcirculation by regulating the exosome-mediated long intergenic non-protein coding RNA (Linc-ROR)/p70 ribosomal protein S6 kinase (p70S6K)/eNOS pathway, reducing myocardial infarction area. Basic research by Li et al. [56,57] confirmed that TXL significantly reduces myeloperoxidase activity and inflammatory factor levels, decreases microvascular permeability and myocardial and mitochondrial edema, thereby improving coronary microcirculation perfusion and promoting left ventricular function recovery. In cerebral ischemia models, TXL also promotes microvascular neovascularization, reduces blood-brain barrier permeability^[58,59], and increases blood flow in ischemic areas^[60], demonstrating its multi-dimensional role in improving microcirculation disorders.

4.3.2.2 Stabilizing Plaques and Anti-Atherosclerosis

Studies by Chen et al.^[58,61-63] showed that TXL significantly reduces lipid levels and inflammatory factors such as monocyte chemoattractant protein-1 (MCP-1), hypersensitive C-reactive protein (hs-CRP), and matrix metalloproteinase-1 (MMP-1) in New Zealand rabbit atherosclerosis models, while increasing plaque

fibrous cap thickness to enhance plague stability. At the molecular level, TXL inhibits intraplaque inflammatory angiogenesis and regulates plaque modulating the X-linked composition by bone marrow kinase (Bmx)/NF-κB/MAPK pathway, significantly reducing plaque vulnerability index^[64]. Qi et al. ^[65] found that TXL regulates gut microbiota during atherosclerosis, specifically increasing the abundance of indistinctus microbiota and trans-ferulic acid content, thereby inhibiting the macrophage nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammatory pathway. Clinical research by Zhang et al. [66] demonstrated that adding TXL to conventional antiplatelet therapy further reduces platelet hyperreactivity and hs-CRP levels to prevent atherosclerosis. Additionally, TXL activates the peroxisome proliferative activated receptor gamma (PPARy) pathway to inhibit oxidized low-density lipoprotein-induced dendritic cell factor maturation and pro-inflammatory secretion. regulating immune-inflammatory responses and delaying atherosclerosis progression [67].

4.3.2.3 Protecting Cardiomyocytes and Promoting Myocardial Angiogenesis

Apoptosis and autophagy are critical pathways for cardiomyocyte survival and death. Li et al. [56] found that TXL pretreatment inhibits myocardial apoptosis protein expression in ischemi<mark>a</mark>-reperfusion minipig models to reduce cardiomyocyte apoptosis. Moreover, TXL pretreatment for one hour upregulates phosphorylated eNOS expression at Ser1179 and Ser635 to reduce myocardial no-reflow and ischemia-reperfusion injury, with the PKA pathway partially mediating the cardioprotective effects. In acute myocardial infarction rat models, TXL treatment reduces infarct size and promotes angiogenesis in the peri-infarct zone, exerting cardioprotective effects. Mechanistically, TXL activates the AMPK signaling pathway, increases myocardial autophagy protein LC3 expression, reduces apoptosis protein Bax levels, promotes autophagy, and inhibits cardiomyocyte apoptosis, thereby protecting cardiomyocytes and promoting myocardial repair [68]. Bai et al. [69] confirmed in myocardial infarction mouse models that TXL promotes myocardial neovascularization by increasing Akt and extracellular regulated protein kinases (ERK) phosphorylation, enhancing VEGF and p-eNOS protein expression, thereby improving post-infarction cardiac function and ventricular remodeling.

4.3.2.4 Relieving Vascular Spasm

TXL exerts anti-vasospasm effects through multi-target regulation, involving key signaling pathways. Studies by Guan et al. [70,71] showed that TXL significantly improves vascular contraction function in rat models of chronic carotid artery

adventitial injury, reducing lumen stenosis (8.2% ± 1.0% vs. 20.1% ± 3.3%), improving lumen cross-sectional area and blood flow. By inhibiting the RAS homologous gene family member A (RhoA)/Rho kinase pathway, TXL significantly downregulates Rho kinase mRNA and phosphorylated myosin phosphatase target subunit 1 (MYPT1) protein expression, reducing vascular sensitivity to serotonin-induced contraction, with mechanisms similar to nicorandil. Further research found that TXL activates the ERK1/2-neuronal nitric oxide synthase (nNOS) signaling axis, promoting ERK1/2 phosphorylation-mediated nNOS expression, improving vascular contraction, relieving vasospasm, and reducing vascular hypersensitivity to contractile factors, exerting anti-vasospasm protective effects [72].

4.3.2.5 Promoting Neurological Recovery

For cerebral ischemic injury, TXL enhances and prolongs the high expression of brain-derived neurotrophic factor (BDNF) and VEGF in ischemic areas, exerting neuroprotective effects [73,74]. In middle cerebral artery occlusion rat models, TXL treatment significantly improves the ultrastructure of cerebral cortical microvessels under electron microscopy [75]. TXL may also improve ischemia/reperfusion injury, neurological damage, and blood-brain barrier disruption by activating mitogen-activated extracellular signal-regulated kinase (MEK1/2)/ERK/p90 ribosomal S6 kinase (p90RSK), PI3K/Akt pathways, or inhibiting low-density lipoprotein receptor-related protein 1 (LRP1), promoting axonal reconstruction and synapse formation of motor nerve fibers, improving microvascular circulation and neovascularization in ischemic areas, thereby enhancing neurological function [59,76-82].

4.3.3 Evidence-Based Practice of TXL in Ischemic Cardiovascular and Cerebrovascular Diseases

4.3.3.1 Coronary Artery Disease

4.3.3.1.1 Stable Angina Pectoris

A meta-analysis by Feng et al. [83], which included 26 randomized controlled trials (RCTs), showed that in patients with stable angina, the addition of TXL to secondary prevention of CAD for more than 4 weeks reduced the frequency of angina episode by 0.91 times per week, shortened the duration of angina by 1.71 minutes per episode, decreased nitroglycerin usage by 2.22 mg per week, and increased the 6-minute walk test distance by 27.86 meters.

4.3.3.1.2 Unstable Angina Pectoris

Meta-analyses [84-98] demonstrated that in patients with unstable angina, the addition of TXL to secondary prevention for more than 2 weeks reduced the frequency of angina episode by 2.32 times per week, shortened the duration of angina by 1.74 minutes per episode, and improved the recovery rate of ST-segment depression by 27%. Continuous use for 1–6 months reduced the risk of myocardial infarction by 65%.

4.3.3.1.3 Variant Angina Pectoris

RCTs [99,100] suggested that in patients with variant angina, the addition of TXL to conventional medical treatment effectively reduced the duration of angina (P < 0.05) and improved angina symptoms.

4.3.3.1.4 Coronary Microvascular Disease Associated with Non-Obstructive Coronary Ischemia

Meta-analyses [101-103] showed that in patients with coronary microvascular disease (CMVD) associated with non-obstructive coronary ischemia, the addition of TXL to conventional treatment for 1 month reduced the frequency of angina attacks by 3.74 episodes per week and delayed the time of ST-segment depression during exercise electrocardiography by 64.51 seconds. After 3 months of treatment, the corrected TIMI (thrombolysis in myocardial infarction) frame count of the target vessel decreased by 11.63 frames.

4.3.3.1.5 ST-Segment Elevation Myocardial Infarction (STEMI)

The ENLEAT study [117] included 219 patients with STEMI. In addition to conventional treatment, patients were given a loading dose of TXL or placebo (2.08 g, 8 capsules) before emergency percutaneous coronary intervention (PCI). After the procedure, patients took 4 capsules three times daily for 6 months. ST-segment elevation was recorded via electrocardiography (ECG) at hospitalization and 1, 2, 6, 12, and 24 hours after coronary balloon dilation to assess myocardial no-reflow. The results showed that at 6 hours post-administration, the degree of ST-segment resolution was significantly better in the TXL group. At 24 hours post-administration, the TXL group significantly reduced the no-reflow rate by 36.6% (34.3% vs. 54.1%, P = 0.0031), decreased ST-segment elevation, accelerated ST-segment resolution, improved myocardial blood perfusion, reduced myocardial infarction area, and improved post-reperfusion cardiac function by reducing segmental wall motion abnormalities.

The CTS-AMI study [118] included 3,797 STEMI patients who, in addition to dual

antiplatelet therapy, were randomly assigned to receive a loading dose of TXL or placebo (2.08 g, 8 capsules). Subsequently, both groups took 4 capsules three times daily for 12 months on top of secondary prevention treatment. The results showed:

- ① The 30-day risk of major adverse cardiovascular and cerebrovascular events (MACCE) (including cardiac death, myocardial reinfarction, emergency revascularization, and stroke) in the TXL group was 36% lower than in the placebo group (3.39% vs. 5.24%, risk ratio [RR] = 0.64, P = 0.006), with a 30% reduction in cardiac death, a 65% reduction in myocardial reinfarction, and a 23% reduction in malignant arrhythmias.
- ②After 1 year of continuous TXL use, the MACCE risk was 36% lower than in the placebo group (5.3% vs. 8.3%, RR = 0.64, P < 0.001), with a 27% reduction in cardiac death, a 74% reduction in myocardial reinfarction, a 56% reduction in stroke, and a 52% reduction in heart failure-related rehospitalization.
- (3) The degree of ST-segment resolution at 24 hours post-administration was significantly better in the TXL group.

A meta-analysis by Chen et al. [119], which included 10 RCTs, suggested that in STEMI patients, the addition of TXL to secondary prevention reduced the MACCE risk by 39% (P < 0.001).

4.3.3.2 Carotid Atherosclerosis

The CAPITAL study [120] included 1,212 patients with non-calcified carotid plaques who were treated with TXL or placebo for 24 months (6 capsules twice daily). The results showed that TXL significantly reduced the annualized change in mean carotid intima-media thickness (-0.00095 mm vs. 0.01312 mm, P < 0.001), decreased plaque volume, improved vascular remodeling index, and reduced the incidence of major cardiovascular events.

4.3.3.3 Ischemic Stroke

The TISS study [121] was a multicenter, randomized, double-blind, placebo-controlled clinical trial that included 2,007 patients with acute ischemic stroke (AIS). In addition to standard treatment, patients were randomly assigned to receive TXL or placebo (4 capsules, TID) for 90 days. The results showed:

- ① Compared to placebo, TXL significantly increased the proportion of AIS patients achieving independent living (modified Rankin Scale [mRS] score \leq 1) at 90 days (65.8% vs. 59.1%, odds ratio [OR] = 1.33, P = 0.002).
- ② The proportions of patients with mRS scores of 0–2, National Institute of Health Stroke Scale (NIHSS) scores of 0–1 or a reduction of ≥4, and Barthel Index

(BI) scores ≥85 were higher in the TXL group than in the placebo group. Prespecified subgroup analyses indicated that patients aged <60 years, those with symptom onset within 48 hours, those with diabetes, and those with large artery atherosclerotic stroke were more likely to benefit from TXL treatment. TXL treatment within 72 hours of AIS onset was more likely to result in favorable functional outcomes, with good safety.

A study by Yan Bo et al. [122] randomized 360 patients with acute/subacute ischemic stroke into two groups. The TXL group received TXL in addition to conventional treatment. After 14 days, although there was no statistical difference in BI scores and neurological deficit scores at 28 days, significant differences were observed at 3, 6, and 12 months. After 12 months, the recurrence rate of cardiovascular and cerebrovascular events was lower in the treatment group.

For stroke recovery patients, Wu Yiling et al. [123] evaluated TXL with ultra-fine grinding technology versus conventional grinding technology and found that the ultra-fine version was effective and safe for patients with qi deficiency, blood stasis, and collateral obstruction type stroke, with efficacy comparable to the conventional version.

A meta-analysis by Zhou Hongqing et al. [124] of 39 RCTs related to TXL in stroke treatment found that the TXL group showed significantly better improvement in neurological function scores than the control group, with higher efficacy at the end of treatment. Cong Lingnan et al. [125] analyzed 14 RCTs and found that the addition of TXL to conventional therapy improved neurological deficits (reducing deficit scores and increasing neurological improvement rates), enhanced daily living ability, and lowered NIHSS scores compared to conventional therapy alone, with no significant difference in adverse event rates.

Table 2 - Recommendations for Tongxinluo Capsule (TXL) in the Management of Ischemic Cardiovascular and Cerebrovascular Diseases

Recommendation	Class of Recommendation	Level of Evident
The addition of TXL to secondary prevention of coronary artery		
disease (CAD) further improves angina symptoms and enhances	I	Α
exercise tolerance in patients with stable angina.		
The addition of TXL to secondary prevention of CAD further reduces		
the incidence of myocardial infarction and improves angina symptoms	I	Α
in patients with unstable angina.		

The addition of TXL to secondary prevention of CAD further reduces major cardiovascular events and the rate of in-stent restenosis in patients after percutaneous coronary intervention (PCI).	I	A
The addition of TXL to secondary prevention of CAD further reduces the risk of major cardiovascular events in patients with ST-segment elevation myocardial infarction (STEMI).	I	A
The addition of TXL to conventional treatment further reduces the		
frequency of angina attacks, improves coronary blood flow, and		
enhances exercise tolerance in patients with coronary microvascular	IIa	Α
disease (CMVD) associated with non-obstructive coronary ischemia.		
The addition of TXL to conventional Western medical treatment further improves angina symptoms in patients with variant angina.	IIa	В
Administering a loading dose of TXL (8 capsules) before emergency		
PCI, followed by 4 capsules three times daily for 1 year, reduces the		
no-reflow rate at 24 hours post-PCI, as well as the 30-day and 1-year	IIa	В
risk of major adverse cardiovascular and cerebrovascular events		
(MACCE) and mortality in STEMI patients. The addition of TVI to governional treatment clave the progression		
The addition of TXL to conventional treatment slows the progression of carotid intima-media thickening and reduces plaque volume in	IIa	Α
patients with carotid plaques.	Ha	71
For patients with acute ischemic stroke, the addition of TXL to		
conventional treatment within 72 hours of onset improves		
neurological deficit symptoms, enhances 90-day neurological function	IIa	В
and daily living ability, and increases the proportion of patients with		
favorable functional outcomes at 90 days.		
For patients with mild stroke (e.g., NIHSS score 4-7), comorbid		
diabetes, large artery atherosclerotic stroke, or those who start		
treatment within 48 hours of the acute phase, TXL may have a more	IIa	В
significant effect on improving 90-day functional outcomes and should		
be prioritized.		
The addition of TXL to conventional treatment may reduce the		
long-term recurrence rate of cerebrovascular events in patients with	IIa	В
ischemic stroke.		
For stroke recovery patients, TXL with ultra-fine grinding technology		
is effective and safe for patients with qi deficiency, blood stasis, and	IIa	В
collateral obstruction type stroke, compared to the conventional		
grinding version.		

Note: TXL, Tongxinluo; CAD, coronary artery disease; PCI, percutaneous coronary intervention; STEMI, ST-segment elevation myocardial infarction; CMVD, coronary microvascular disease.

4.3.4 Safety of TXL

According to the China National Adverse Drug Reaction Monitoring System [52], as of March 2025, a total of 9,598 ADR reports related to TXL were received, with a reporting rate of approximately 0.82 per 10,000, indicating that the incidence of adverse reactions is classified as very rare. The main adverse reactions include nausea, abdominal discomfort, abdominal pain, vomiting, bloating, dizziness, and others. If gastrointestinal adverse reactions such as nausea, abdominal discomfort, abdominal pain, vomiting, bloating, or diarrhea occur after taking Tongxinluo, reducing the dosage or taking the medication after meals can alleviate these symptoms.

The CTS-AMI study [118] showed that TXL does not increase the risk of bleeding, and the incidence of serious adverse events was similar to that of the placebo group (2.2% vs. 2.8%, P = 0.25). The TISS study [121] demonstrated that the incidence of adverse events (38.6% vs. 38.4%, P = 0.95) and serious adverse events (2.2% vs. 1.9%, P = 0.64) was similar between the TXL and placebo groups. TXL is contraindicated in patients with hemorrhagic disorders and women during menstruation.

4.4 Luobing Theory-Based Medicine and Arrhythmias

4.4.1 Formula Characteristics of SSYX—— "warming, clearing, tonifying, and dredging"

Based on the syndrome characteristics and clinical manifestations of "Non-circulation" during the arrhythmia stage, the therapeutic principle of "warming, clearing, tonifying, and dredging" was established, with SSYX as the representative intervention drug. The formula includes ingredients such as ginseng (人参), sour jujube seed (酸枣仁), cornus (山茱萸), and Ophiopogon (麦冬) to replenish qi, nourish yin, and calm the mind, as well as coptis (黄连), spikenard (甘松), salvia (丹参), and ground beetle (土鳖虫) to clear heat, regulate qi, and dredge meridians. This combination exerts an "integrated regulatory effect, treating both fast and slow arrhythmias," providing a formula basis for its comprehensive intervention in the prevention and treatment of arrhythmias $^{[12]}$.

4.4.2 Mechanisms of SSYX in Preventing and Treating Arrhythmias

4.4.2.1 Multi-Ion Channel Blocking Effects

Voltage-gated sodium channels (I_{Na}) form the rapid depolarization phase (Phase 0) of the action potential. Li et al. found that SSYX inhibits the peak I_{Na} current in guinea pig ventricular myocytes, exerting a Class I antiarrhythmic effect by

blocking Na+ channels [126,127].

Potassium channels (K⁺) are crucial for maintaining the resting membrane potential and repolarization of the action potential. The transient outward potassium current (I_{to}) is strongly expressed in the epicardium. SSYX significantly inhibits epicardial Ito, reduces repolarization dispersion, prolongs the action potential duration (APD) and effective refractory period (ERP) in atrial and ventricular myocytes, and decreases the occurrence of atrial fibrillation (AF), reentry, and torsades de pointes [128,129]. SSYX primarily inhibits the slow component (I_{ks}) of the delayed rectifier potassium current (I_k), reducing the incidence of tachyarrhythmias [126,130]. It also blocks the inward component of the inward rectifier potassium current (I_{k1}) while slightly increasing the outward component, suppressing early afterdepolarizations and triggered arrhythmias [126,130]. Its multi-channel blocking effects on K⁺ are similar to those of the Class III antiarrhythmic drug amiodarone.

Zhao et al. found in myocardial ischemia animal models that SSYX inhibits Ito and Ik1, prolongs APD and ERP in ventricular myocytes, but does not trigger intracellular Ca^{2+} overload, suppressing delayed afterdepolarizations [121]. In vitro, SSYX reduces Ca^{2+} overload in ventricular myocytes and inhibits L-type calcium channels (I_{Ca-L}), shifting the current density-voltage curve upward and prolonging the recovery time after I_{Ca-L} inactivation [126,131,132]. By blocking I_{Ca-L} channels and reducing Ca^{2+} overload, SSYX exerts dual effects of Class IV antiarrhythmia and ischemic myocardial protection.

Sun et al. demonstrated that in HEK293 cells transfected with hyperpolarization-activated cyclic nucleotide-gated channels (hHCN4), SSYX powder solution reversibly inhibits hHCN4 without altering channel activation kinetics^[133]. Inhibiting hHCN4 pacemaker current may be one of the electrophysiological mechanisms of SSYX in treating ventricular premature beats. Additionally, SSYX has a certain blocking effect on Kv1.4 potassium channel current ^[134].

4.4.2.2 Improvement of Myocardial Electrophysiological Remodeling

Electrophysiological remodeling mainly includes changes in myocardial cell conductivity and automaticity, alterations in membrane ion channels, and abnormal gap junctions. In various arrhythmia-prone animal models, SSYX improves APD and ERP in atrial and ventricular myocytes, reduces APD dispersion, decreases myocardial cell automaticity, and lowers susceptibility to AF and ventricular arrhythmias^[135,136]. Gap junctions are responsible for the

rapid transmission of action potentials between myocardial cells. SSYX increases the expression of connexin 40 (Cx40) in atrial myocytes of diabetic rats and enhances connexin 43 (Cx43) protein expression in ventricular myocytes of metabolic syndrome rats through the TLR4 (Toll-like receptor 4)/MyD88 (Myeloid differentiation primary response gene 88)/CaMKII (Calcium-calmodulin dependent protein kinase II) signaling pathway, improving gap junction remodeling [137,138]. It also upregulates myocardial ion channel proteins Kv4.2, Kv4.3, and Cav1.2, improving ion channel remodeling [138], and reduces heterogeneity in intercellular electrical conduction, improving the direction and timing of electrical signal propagation [139].

4.4.2.3 Improvement of Myocardial Structural Remodeling and Inhibition of Fibrosis

Liu et al. suggested that SSYX alleviates angiotensin II (Ang II)-induced myocardial hypertrophy, improves myocardial cell morphology, and inhibits apoptosis^[140]. In myocardial infarction rat and rabbit models, SSYX increases left ventricular ejection fraction (LVEF) and fractional shortening (FS), enhances myocardial contractility, improves cardiac function, reduces Collagen I/III protein levels, decreases collagen deposition, and downregulates the expression of fibrosis-related genes and proteins such as transforming growth factor-β1 (TGF-β1), MMP-2, MMP-9, and tissue inhibitor of metalloproteinase 1 (TIMP-1), inhibiting the differentiation of cardiac fibroblasts into myofibroblasts and delaying atrial and ventricular fibrosis [139,141]. Shen et al. found that SSYX alleviates cardiac fibrosis in diabetic cardiomyopathy mice by inhibiting the TGF-β1/Smad pathway [142].

4.4.2.4 Bidirectional Regulation of Cardiac Autonomic Nerve Function

Zhao et al. found in a canine AF model that SSYX increases the high-frequency component of vagal activity, decreases the low-frequency component and LF/HF ratio of sympathetic activity, inhibits atrial sympathetic hyperinnervation, enhances vagal function, and balances autonomic nerve activity, slowing down rapid heart rates [143]. By regulating sympathetic function, SSYX inhibits systemic or local renin-angiotensin-aldosterone system (RAAS) activity, reduces Ang II levels and bioactivity, improves atrial substrate, alleviates fibrosis, lowers AF risk, and maintains sinus rhythm [128]. It also increases acetylcholine and α 7 nicotinic acetylcholine receptor (α 7nAChR) expression, enhancing the cholinergic anti-inflammatory pathway and reducing levels of inflammatory factors such as tumor necrosis factor- α (TNF- α) and IL-6[143]. Through balancing autonomic nerve activity, inhibiting sympathetic function, enhancing vagal function, and

activating the cholinergic anti-inflammatory pathway, SSYX exerts antiarrhythmic effects.

In a porcine model of bradyarrhythmia, SSYX increases heart rate and promotes electrical signal propagation in the sinoatrial and atrioventricular nodes, an effect not influenced by autonomic nervous system inhibition. Feng et al. found in vitro that SSYX uniformly shortens APD and ERP without inducing arrhythmias^[144].

4.4.2.5 Anti-Inflammatory Effects, Metabolic Improvement, and Myocardial Microcirculation Enhancement

Zhang et al. demonstrated that Shensong Yangxin reduces the expression of inflammatory proteins such as intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), as well as levels of inflammatory factors including endothelin-1 (ET-1), TNF-α, IL-6, and MCP-1 in db/db mice [145]. It inhibits the infiltration and polarization of M1 macrophages, alleviating myocardial inflammation. Shensong Yangxin upregulates iron transport proteins, suppressing oxidative stress and reactive oxygen species (ROS) levels caused by myocardial iron overload [146]. It increases mitochondrial density, activates AMPK, upregulates PGC-1α to improve mitochondrial energy metabolism, and enhances the expression of carnitine palmitoyltransferase I (CPT-1) and GLUT-4 to promote fatty acid and glucose oxidation [140]. In various arrhythmia-prone animal models, Shensong Yangxin improves the structure of cardiac microvascular endothelial cells, promotes the formation of tight junctions between myocardial endothelial cells, increases microvascular density, and enhances nitric oxide (NO) levels by upregulating the VEGF/eNOS pathway, balancing vasoconstrictors and vasodilators, protecting microvascular endothelial cells, and improving myocardial microcirculation [145,147].

4.4.3 Evidence-Based Practice of SSYX in Arrhythmias

4.4.3.1 Premature Ventricular Contractions (PVCs)

In a multicenter, double-blind, RCT [148], 859 patients with frequent PVCs were enrolled. Among them, 188 patients without organic heart disease (OHD) were treated with SSYX or placebo (TID, 4 capsules each), while 671 patients with OHD received SSYX (TID, 4 capsules each) or mexiletine (TID, 150 mg each) for 8 weeks. The results showed that in the non-OHD PVC group, both SSYX and placebo reduced the number of PVCs, with SSYX significantly outperforming placebo in total efficacy (74.2% vs. 28.9%, P < 0.001). In the OHD PVC group, both SSYX and mexiletine reduced PVC frequency, with SSYX significantly

outperforming mexiletine in total efficacy (65.8% vs. 50.7%, P < 0.001). Additionally, SSYX significantly improved clinical symptoms such as palpitations and chest tightness associated with PVCs.

The SS-HFVPT study [149] a multicenter, randomized, double-blind, placebo-controlled clinical, included 465 patients with heart failure and frequent PVCs. Patients received standardized Western medicine treatment combined with Shensong Yangxin or placebo (TID, 4 capsules each) for 12 weeks. The results showed that the SSYX group had a significantly greater reduction in 24-hour PVC counts compared to the placebo group (-2145 ± 2848 vs. -841 ± 3411 , P < 0.05), along with improved LVEF and reduced plasma N-terminal pro-brain natriuretic peptide (NT-proBNP) levels.

A multicenter, randomized, double-blind, placebo-controlled clinical study enrolled 333 patients with PVCs and sinus bradycardia. Among them, 166 patients received SSYX (TID, 4 capsules each), and 167 received placebo for 8 weeks. The results showed that SSYX significantly reduced 24-hour PVC counts, with a higher reduction rate than the placebo group (68.2% vs. 32.2%, P < 0.001). Additionally, SSYX increased the average ventricular rate by 10.9%, significantly outperforming the placebo group for 4.7% (P < 0.001).

Meta analysis $^{[148-162]}$ indicated that patients with PVCs taking SSYX for over 4 weeks experienced an average reduction of 867.41 PVCs/24h (P < 0.001), with total clinical efficacy and symptom improvement superior to the control group (P < 0.001).

A randomized, double-blind, multicenter, placebo-controlled study $^{[163]}$ evaluated the safety and efficacy of SSYX in treating bradycardia. It included 115 patients with bradycardia, with 104 in the control group receiving SSYX (TID, 4 capsules each) for 4 weeks. The results showed significant increases in average, maximum, and minimum heart rates, along with improved symptom scores in the SSYX group (all P < 0.05 or 0.01).

4.4.3.2 Paroxysmal Atrial Fibrillation (AF)

A multicenter, randomized, double-blind, double-dummy, controlled clinical trial $^{[164]}$ enrolled 349 patients with symptomatic paroxysmal AF. Patients were divided into three groups: SSYX (4 capsules TID) + propafenone placebo, propafenone + SSYX placebo, or SSYX + propafenone, all for 8 weeks. The results showed no significant difference in overall AF efficacy among the three groups (62.3% vs. 58.6% vs. 58.5%, P > 0.05). However, SSYX alone or combined with propafenone effectively reduced the average AF episode frequency and

shortened AF duration (all P < 0.01).

Meta-analyses $^{[165-172]}$ demonstrated that patients with symptomatic paroxysmal AF taking SSYX combined with antiarrhythmic drugs (AAD) for over 2 months experienced a reduction in AF episode frequency by 2.23 times/week (P = 0.002), shortened AF duration by 1.64 hours/episode (P = 0.02), and improved sinus rhythm maintenance efficacy (P = 0.039).

An RCT $^{[173]}$ showed that in patients with paroxysmal AF undergoing catheter ablation, the combination of SSYX and dronedarone reduced early postoperative recurrence and atrial tachyarrhythmia incidence (6.6% vs. 20%, P = 0.03).

4.4.3.3 Persistent AF Post-Catheter Ablation

The SS-AFRF study, a multicenter, randomized, double-blind, placebo-controlled clinical trial [174], enrolled 920 patients with persistent AF undergoing their first catheter ablation. After a blanking period post-ablation, patients were given SSYX or placebo (4 capsules, TID) and followed for 1 year. The primary endpoint was the incidence of recurrent atrial tachyarrhythmias lasting ≥30 seconds after the blanking period. The 1-year follow-up showed that SSYX significantly reduced AF recurrence rates post-ablation compared to placebo (14.5% vs. 22.3%, P = 0.001), lowering the recurrence risk by 40% (HR = 0.6, 95% CI: 0.4–0.8). Additionally, SSYX significantly reduced AF burden at 3 and 6 months post-ablation (2.8% vs. 7.6%, P = 0.002 and 3.3% vs. 7.7%, P = 0.025, respectively) and improved quality of life.

Meta-analyses [174-178] indicated that in patients with persistent AF post-catheter ablation, SSYX combined with AAD or used alone for over 3 months reduced the risk of atrial tachyarrhythmias by 43% (P < 0.001).

Table 3 - Recommendations for Shensong Yangxin Capsules (SSYX) in the Management of Arrhythmias

Recommendation	Class of	Level of
	Recommendation	Evidence
For patients with symptomatic premature ventricular		
contractions (PVCs), regardless of the presence of structural	1	Δ.
heart disease, SSYX can reduce PVC frequency and improve	1	Α
clinical symptoms such as palpitations and chest tightness.		
For patients with PVCs and left ventricular systolic		
dysfunction, SSYX can reduce PVC frequency, improve left	IIa	В
ventricular function, and has no proarrhythmic side effects.		

For patients with sinus bradycardia or PVCs with sinus		
bradycardia, SSYX can increase sinus rhythm, reduce PVC	IIa	В
frequency, and improve quality of life.		
For patients with paroxysmal atrial fibrillation (AF), SSYX,		
either alone or combined with antiarrhythmic drugs (AAD),	IIa	В
can reduce AF episode frequency and shorten AF duration.		
For patients with persistent AF post-catheter ablation, SSYX,		
either alone or combined with AAD, can reduce early	II.e	D
postoperative AF recurrence and/or atrial tachyarrhythmia	IIa	В
incidence.		

Notes: SSYX, Shensong Yangxin; PVC, premature ventricular contraction; AAD, antiarrhythmic drugs.

4.4.4 Safety of SSYX

According to the China National Adverse Drug Reaction Monitoring System^[52], as of March 2025, a total of 9,835 adverse drug reaction (ADR) reports related to Shensong Yangxin were received, with a reporting rate of approximately 0.75‰, indicating a very rare level of ADR incidence. The main adverse reactions included abdominal distension, nausea, flatulence, abdominal discomfort, vomiting, and rash.

The SS-AFRF study^[174] showed no significant differences in adverse events (67.4% vs. 67.0%, P = 0.94), serious adverse events (8.5% vs. 11.5%, P = 0.15), or liver and kidney function levels (P > 0.05) between the SSYX and placebo groups.

4.5 Luobing Theory-Based Medicine and Chronic Heart Failure

4.5.1 Formulation Characteristics of QLQX —— "Simultaneous Regulation of Qi, Blood, and Water"

Based on the "non circulation" theory and the symptomatic characteristics and clinical manifestations of HF, the therapeutic principle of "simultaneous regulation of Qi, blood, and water" was established, with QLQX as the representative intervention drug. The formulation includes herbs such as Astragalus (黄芪), Aconite (附子), Ginseng (人参), and Cinnamon Twig (桂枝) to tonify Qi and warm Yang; Salvia (丹参) and Safflower (红花) to promoting blood circulation for removing obstruction meridians; and Tinglizi (葶苈子), Alisma (泽泻), and Cortex Periplocae (香加皮) to inducing diuresis for removing edema. This embodies the formulation principle of "simultaneous regulation of Qi, blood, and water," providing a comprehensive basis for the holistic treatment of chronic heart failure [12].

4.5.2 Mechanisms of QLQX in Management Chronic Heart Failure

4.5.2.1 Improvement of Hemodynamics in Heart Failure

Cardiotonic Effects: QLQX enhances cardiac function by inhibiting Na⁺/K⁺-ATPase activity in myocardial cells, increasing parasympathetic nerve tension, and delaying atrioventricular conduction [179]. Studies by Liang et al. [180,181] demonstrated that in various heart failure animal models, QLQX significantly improved LVEF, FS, maximum left ventricular pressure rise rate, and myocardial contractility, while reducing left ventricular end-diastolic pressure.

Diuretic Effects: QLQX significantly increased renal blood flow and reduced urine osmolality in heart failure model rats. Its regulatory effect on arginine vasopressin (AVP) levels surpassed that of the traditional diuretic furosemide. It downregulated the expression of type 2 AVP receptors and aquaporin 2 (AQP2) in renal collecting duct epithelial cells, reducing tissue sensitivity to AVP. Through dual regulation of plasma AVP levels and its receptor pathway, it effectively reduced renal tubular water reabsorption [182,183].

Vasodilatory Effects: QLQX markedly increased plasma and aortic calcitonin gene-related peptide (CGRP) expression levels, activating the NO-cyclic guanosine monophosphate (cGMP)-protein kinase signaling cascade to exert vasodilatory effects [182].

4.5.2.2 Antagonism of Neuroendocrine System Overactivation

Inhibition of RAAS Activation: QLQX reduced Ang II, plasma renin activity, and aldosterone levels, downregulated angiotensin-converting enzyme (ACE) and angiotensin type 1 receptor expression, inhibited ventricular remodeling, and improved cardiac function [184].

Inhibition of Sympathetic Overactivation: Qili Qiangxin effectively reduced plasma levels of norepinephrine, adrenocorticotropic hormone, prostaglandin E2, and NT-proBNP in heart failure animals, lowering sympathetic excitability, improving cardiac function, and delaying heart failure progression. Its reduction of BNP levels surpassed that of metoprolol [181,185,186]. Through central regulatory mechanisms, it improved sympathetic overactivation and inhibited ventricular remodeling [187].

4.5.2.3 Regulation of Immunity, Inhibition of Oxidative Stress, and Myocardial Fibrosis

Regulation of Immune-Inflammatory Responses: In rat models of acute myocardial infarction and patients with dilated cardiomyopathy, QLQX exhibited significant immunomodulatory effects, reducing pro-inflammatory factor TNF- α levels and enhancing anti-inflammatory factor IL-10 expression, thereby

restoring the pro-inflammatory/anti-inflammatory balance [188-190]. It inhibited NF- κ B and NLRP3 inflammasome activation, reducing T lymphocyte infiltration and activation [189-193], thereby exerting anti-inflammatory effects and improving ventricular remodeling.

Inhibition of Oxidative Stress and Myocardial Fibrosis: QLQX activated the PI3K/Akt signaling pathway, reduced ROS levels, and upregulated SOD expression to alleviate oxidative stress [194]. It reduced myocardial collagen deposition in myocardial infarction rats, regulated the balance of matrix metalloproteinases (MMPs) and their inhibitors, and inhibited myocardial fibrosis and ventricular remodeling [195-197], with effects comparable to angiotensin receptor-neprilysin inhibitors [192]. Its improvement of the whole heart mass index in heart failure rats surpassed that of metoprolol [186].

4.5.2.4 Improvement of Myocardial Metabolism

QLQX activated the PPAR γ /PGC-1 α signaling axis to promote fatty acid β -oxidation [198-200]. It regulated the glucose transport system (GLUT1/GLUT4), enhanced glucose uptake and oxidative phosphorylation [201,202], and promoted glucose utilization, with efficacy comparable to trimetazidine [201]. It activated the AMPK/PGC-1 α pathway to inhibit pathological anaerobic glycolysis [199-202] and protected mitochondrial structural integrity, improving electron transport chain function [203,204].

4.5.2.5 Protection of Myocardial Microvasculature and Cardiomyocytes

Microvascular Endothelial Protection: QLQX inhibited VCAM-1, ICAM-1, and myocardial nutrient factor expression, improving myocardial microvascular endothelial structure and function [205]. It activated the neuregulin-1 (NRG-1)/epidermal growth factor receptor (EGFR)-PI3K/Akt/mTOR autophagy pathway, promoting angiogenesis under hypoxic conditions and reducing microvascular endothelial cell apoptosis [206-209].

Cardiomyocyte Protection: Qili Qiangxin regulated the Bcl-2/Bax expression balance, inhibited caspase cascade reactions, and exerted anti-apoptotic effects [181,194,210-213]. It promoted the clearance of damaged mitochondria through the PTEN-induced kinase 1 (PINK1)/parkin pathway [214]. It regulated the PI3K/glycogen synthase kinase-3 β (GSK-3 β) and mTOR signaling networks to maintain autophagy homeostasis and protect cardiomyocytes [215-218].

4.5.3 Evidence-Based Practice of QLQX in Chronic Heart Failure

4.5.3.1 Heart Failure with Reduced Ejection Fraction (HFrEF)

The QUEST study^[219], a multicenter, double-blind, placebo-controlled, randomized clinical trial, enrolled 3,110 HFrEF patients. In addition to GDMT, patients were given either QLQX or placebo (4 capsules, TID). Results showed that, after a median follow-up of 18.3 months, the QLQX group experienced a 22% reduction in the composite risk of cardiovascular death or HF hospitalization (P < 0.001), a 24% reduction in HF hospitalization risk (P = 0.002), and a 17% reduction in cardiovascular death risk (P = 0.045) compared to the placebo group. At the 3-month follow-up, the proportion of patients with NT-proBNP levels reduced by >30% was significantly higher in the QLQX group than in the placebo group (56.54% vs. 49.86%, P = 0.002). Additionally, compared to the placebo group, the QLQX group showed a 24% reduction in the composite endpoint of cardiovascular death and heart failure rehospitalization in the subgroup of HF with CAD (1,156 vs. 1,165 cases) and a 31% reduction in the subgroup of HF with hypertension (708 vs. 741 cases).

The QLQX-DCM study ^[190], another multicenter, double-blind, placebo-controlled, randomized clinical trial, enrolled 345 patients with dilated cardiomyopathy. Patients received either QLQX or placebo (4 capsules, TID) on top of GDMT. After 12 months of follow-up, compared to baseline, the QLQX group showed reductions in interferon- γ , IL-17, TNF- α , and IL-4, and an increase in IL-10 (all P < 0.001), indicating improved regulation of inflammatory factor imbalance. The QLQX group also exhibited a downward trend in all-cause mortality (-2.17%) and heart failure rehospitalization rates (-2.28%) compared to the control group.

In another multicenter, double-blind, placebo-controlled, randomized clinical trial ^[220], 512 HFrEF patients were given either QLQX or placebo (4 capsules, TID) on top of standard heart failure treatment for 12 weeks. Results showed that the proportion of patients with NT-proBNP levels reduced by >30% was significantly higher in the QLQX group than in the placebo group (47.95% vs. 31.98%, P < 0.001). The QLQX group also had a significantly lower incidence of composite cardiac events (including cardiovascular death, HF hospitalization, resuscitation after cardiac arrest, intravenous therapy for worsening heart failure, and stroke) compared to the control group (4.51% vs. 10.93%, P = 0.008).

A meta-analysis by Mao Tianshi et al. [221], which included the above three studies, demonstrated that QLQX reduced the composite risk of cardiovascular death or heart failure rehospitalization by 18% (P = 0.0005), cardiovascular death risk by 17% (P = 0.03), heart failure rehospitalization risk by 18% (P = 0.004), and all-cause mortality risk by 16% (P = 0.03) in chronic heart failure patients. After

more than 4 weeks of QLQX treatment, left ventricular ejection fraction (LVEF) increased by 6.04% (P < 0.001), left ventricular end-diastolic diameter decreased by 3.66 mm (P < 0.001), New York Heart Association (NYHA) functional class significantly improved (P < 0.001), 6-minute walk test distance increased by 51.27 meters (P < 0.001), and the Minnesota Living with Heart Failure Questionnaire score decreased by 8.97 points (P < 0.001). After 3 months of treatment, NT-proBNP levels decreased by 276.78 pg/mL (P < 0.001).

4.5.3.2 Heart Failure with Preserved Ejection Fraction (HFpEF)

Randomized controlled studies suggest that HFpEF patients treated with QLQX on top of GDMT for 6 months showed improvements in E/A ratio, LVEF, and 6-minute walk test distance compared to baseline, with significantly greater improvements than the control group (P < 0.05). Reductions in left atrial volume index, left ventricular end-diastolic diameter, Minnesota Living with Heart Failure Questionnaire scores, C-reactive protein, and NT-proBNP levels were significantly greater in the QLQX group than in the control group (P < 0.05). Multiple clinical studies have shown that HFpEF patients taking QLQX for more than 1 month experienced significant improvements in left ventricular diastolic function (e.g., E/A, E/e') [2222-225].

Table 4 - Recommendations for Qiliqiangxin Capsules (QLQX) in the Management of Chronic Heart Failure

Recommendation	Class of	Level of		
Recommendation	Recommendation	Evidence		
For HFrEF patients, adding QLQX on top of GDMT can	I	A		
further reduc <mark>e</mark> heart failure rehospitalization and				
cardiovascular mortality rates.				
QLQX can improve cardiac function and ventricular	I	Α		
remodeling indicators, enhance exercise tolerance, and				
improve quality of life in chronic heart failure patients.				

Note: QLQX, Qiliqiangxin; HFrEF, Heart Failure with Reduced Ejection Fraction; GDMT, Guideline-Directed Management and Therapy.

4.5.4 Safety of QLQX

According to the National Adverse Drug Reaction Monitoring System^[52], as of March 2025, a total of 4,777 adverse drug reaction reports related to Qili Qiangxin were received, with a reporting rate of approximately 2.34 per 100,000, classifying its adverse reaction incidence as rare. The main adverse reactions included nausea, diarrhea, abdominal discomfort, vomiting, abdominal pain, and rash.

Both the QUEST study^[219] and the QLQX-DCM study^[190] showed no statistically significant difference in the incidence of gastrointestinal symptoms between the QLQX and placebo groups. If gastrointestinal adverse reactions such as nausea, abdominal discomfort, abdominal pain, vomiting, bloating, or diarrhea occur while taking QLQX, it is recommended to reduce the dosage or take the medication after meals to alleviate symptoms. Concurrent use with digoxin is not recommended.

The QUEST study $^{[219]}$ also demonstrated that adding QLQX to GDMT did not significantly affect blood pressure or heart rate in chronic heart failure patients. Compared to the placebo group, Qili Qiangxin did not increase the risk of renal function deterioration (3.79% vs. 4.50%) or elevated liver enzyme levels (2.57% vs. 3.09%). The study excluded patients with serum creatinine levels >176.82 μ mol/L.

The QLQX-DCM study [190] showed that the proportion of patients with excessive digoxin blood concentrations was similar between the Qili Qiangxin and placebo groups (1.17% vs. 1.17%).

5 Conclusion

Cardiovascular diseases are the leading cause of death globally. The cardiovascular continuum reflects the systemic and complex nature of cardiovascular diseases, aligning closely with the holistic perspective of traditional Chinese medicine (TCM). This has led to a paradigm shift in disease intervention strategies. Under the guidance of the Mai Luo theory, Luobing theory-based medicine such as Jinlida (for "strengthening the spleen and promoting fluid circulation"), Tongxinluo (for "searching and dredging"), Shensong Yangxin (for "warming, clearing, tonifying, and dredging"), and Qiliqiangxin (for "simultaneous regulation of Qi, blood, and water") cover different stages of the cardiovascular continuum, enabling precise intervention. These therapies provide a clinical treatment approach integrating tradition and modern medicine with distinctive Chinese characteristics for the prevention and management of the cardiovascular continuum.

This consensus describes the significant value of the cardiovascular continuum and the Mai Luo theory. It introduces the formulation characteristics, elucidates the pharmacological mechanisms, and summarizes the main evidence-based clinical evidence and safety profiles of Jinlida, Tongxinluo, Shensong Yangxin, and Qiliqiangxin for conditions such as diabetes and prediabetes, ischemic

cardiovascular and cerebrovascular diseases, arrhythmias, and chronic heart failure. Additionally, by synthesizing expert clinical experience with evidence-based research and adhering to ESC standards, the consensus provides recommendations and clinical evidence levels for integrated Chinese and Western medicine interventions at key stages of the cardiovascular continuum. These recommendations are intended to serve as a reference for clinicians in their practice.

Annex A (Informative)

Methods and Technical Approach

The process and methods for developing this consensus were based on the Technical Specifications for Expert Consensus in the Development and Revision of Clinical Practice Guidelines for Traditional Chinese Medicine (T/CACM1049-2017) issued by the China Association of Chinese Medicine. The development process is illustrated in Figure A.1.

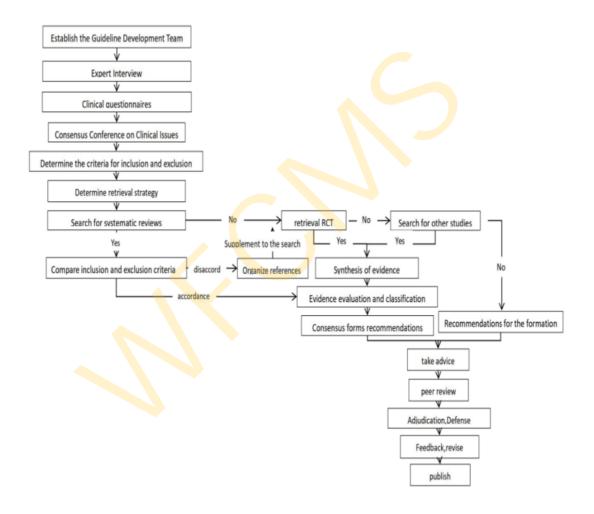


Figure A.1 Flowchart of Expert Consensus Development

Annex B

(Informative)

Literature Screening Criteria and Evidence Levels

The recommendation criteria and evidence quality evaluation standards in this consensus were referenced from the European Society of Cardiology (ESC) guidelines (Tables B.1 and B.2). Commonly used drugs for systematic intervention in the cardiovascular event chain based on collaterals theory are listed in Table B.3.

Table B.1 - Definitions of Recommendation Classes

Class	Definition	
I	Procedures or treatments proven and/or unanimously recognized as	
	beneficial, useful, and effective.	
IIa	Evidence/opinion favors usefulness and/or effectiveness, and the	
	application of these procedures or treatments is reasonable.	
IIb	Evidence/opinion is not yet fully proven to be useful and/or effective, but	
	their application may be considered.	
III	Procedures or treatments proven and/or unanimously recognized as	
	useless and/or ineffective, and potentially harmful in some cases; not	
	recommended.	

Table B.2 - Definitions of Evidence Levels

Level	Definition	
A	Data derived from multiple randomized controlled trials or meta-analyses.	
В	Data derived from a single randomized controlled trial or multiple non-randomized studies.	
С	Based solely on expert consensus opinions and/or small-scale clinical trials, retrospective studies, or registry studies.	

Table B.3 - Usage Indication for Luobing Theory-based Medicine in Systematic Intervention on the Cardiovascular Continuum

Drug	Common Oral Dosage
Jinlida Granules	9 g/dose, 3 times daily
Tongxinluo Capsules	Carotid atherosclerosis: 6 capsules/dose, 2 times daily
	Coronary heart disease: 4 capsules/dose, 3 times daily
	STEMI: Loading dose of 8 capsules before emergency PCI,
	followed by 4 capsules/dose, 3 times daily
	Stroke: 4 capsules/dose, 3 times daily
Shensong Yang	xin 4 capsules/dose, 3 times daily
Capsules	

Note: STEMI, ST-segment elevation myocardial infarction; PCI, percutaneous coronary intervention.

Bibliography

- [1] Mensah G A, Fuster V, Roth G A. A Heart-Healthy and Stroke-Free World: Using Data to Inform Global Action[J]. J Am Coll Cardiol, 2023, 82 (25): 2343-2349. DOI: 10.1016/j.jacc.2023.11.003.
- [2] World Heart Report 2023: Confronting the World's Number One Killer[R]. Geneva, Switzerland: World Heart Federation, 2023.
- [3]"Healthy China 2030" Plan Outline [R]. China: State Council, 2016.
- [4] Dzau V, Braunwald E. Resolved and unresolved issues in the prevention and treatment of coronary artery disease: a workshop consensus statement[J]. Am Heart J, 1991, 121 (4 Pt 1): 1244-1263.
- [5] National Cardiovascular Center, China Cardiovascular Health and Disease Report Editorial Board, Hu Shengshou. China Cardiovascular Health and Disease Report 2023 Summary [J]. China Circulation Journal, 2024,39(7):625-660. DOI: 10.3969/j.issn.1000-3614.2024.07.001.
- [6] Trusinskis K, Knoka E, Caunite L, et al. What Is Hidden Behind Yellow Pixels: from Pathology to Intravascular Imaging of Atherosclerotic Plaque[J]. Curr Atheroscler Rep, 2022, 24 (2). DOI: 10.1007/s11883-022-00990-3.
- [7] Zhang M, Liu Q, Meng H, et al. Ischemia-reperfusion injury: molecular mechanisms and therapeutic targets[J]. Signal Transduct Target Ther, 2024, 9 (1): 12. DOI: 10.1038/s41392-023-01688-x.
- [8] Heusch G, Gersh B J. The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: a continual challenge[J]. Eur Heart J, 2017, 38 (11): 774-784. DOI: 10.1093/eurheartj/ehw224.
- [9] Eltzschig H K, Eckle T. Ischemia and reperfusion--from mechanism to translation[J]. Nat Med, 2011, 17 (11): 1391-1401. DOI: 10.1038/nm.2507.
- [10] Packer M. Traditional Chinese medicine: cardiovascular drug development through a holistic framework[J]. Eur Heart J, 2024, 45 (40): 4315-4317. DOI: 10.1093/eurheartj/ehae625.
- [11] Wu Yiling, Jia Zhenhua, Chang Liping, et al. The study on the prevention and treatment of vascular lesions guided by the network theory of Yingwei [J]. China Journal of Experimental Formulas, 2019,25(01):1-10. DOI: 10.13422/j.cnki.syfjx.20190199.
- [12] Wu Yiling. Materia Medica [M]. Beijing: China Press of Traditional Chinese Medicine, 2017.
- [13] Yin Yujie, Chang Liping, Zhu Yao, et al. Analysis of the Treatment Patterns of Cardiovascular Event Chains Based on the Guiding Theory of Contextual Studies and Medical Case Data Mining [J]. China Journal of Experimental Formulas, 2022,28(18):144-151.DOI: 10.13422/j.cnki.syfjx.20220651.
- [14] Jia Zhenhua. Guiding systematic intervention of cardiovascular event chain with meridian theory and Ying-Wei theory [J]. Journal of Traditional Chinese Medicine,

- 2023,64(07):655-661. DOI: 10.13288/j.11-2166/r.2023.07.002.
- [15] Jia Zhenhua. "Tiaoying Weijin Xue" System Intervention on Cardiovascular Event Chain Medication Patterns [J]. Journal of 疑难病, 2024,23(12):1409-1412.
- [16] Gyberg V, De Bacquer D, Kotseva K, et al. Screening for dysglycaemia in patients with coronary artery disease as reflected by fasting glucose, oral glucose tolerance test, and HbA1c: a report from EUROASPIRE IV--a survey from the European Society of Cardiology[J]. Eur Heart J, 2015, 36 (19): 1171-1177. DOI: 10.1093/eurheartj/ehv008.
- [17] Kim H, Ahn J-M, Kang D-Y, et al. Management of Coronary Vulnerable Plaque With Medical Therapy or Local Preventive Percutaneous Coronary Intervention[J]. JACC Asia, 2024, 4 (6): 425-443. DOI: 10.1016/j.jacasi.2024.04.001.
- [18] Mitka M. Cholesterol drug lowers LDL-C levels but again fails to show clinical benefit[J]. JAMA, 2010, 303 (3): 211-212. DOI: 10.1001/jama.2009.1915.
- [19] Ridker P M, Bhatt D L, Pradhan A D, et al. Inflammation and cholesterol as predictors of cardiovascular events among patients receiving statin therapy: a collaborative analysis of three randomised trials[J]. Lancet, 2023, 401 (10384): 1293-1301. DOI: 10.1016/S0140-6736(23)00215-5.
- [20] Welt F G P, Batchelor W, Spears J R, et al. Reperfusion Injury in Patients With Acute Myocardial Infarction: JACC Scientific Statement[J]. J Am Coll Cardiol, 2024, 83 (22): 2196-2213. DOI: 10.1016/j.jacc.2024.02.056.
- [21] Heusch G. Myocardial ischaemia-reperfusion injury and cardioprotection in perspective[J]. Nat Rev Cardiol, 2020, 17 (12): 773-789. DOI: 10.1038/s41569-020-0403-y.
- [22] Joglar J A, Chung M K, Armbruster A L, et al. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines[J]. Circulation, 2024, 149 (1). DOI: 10.1161/CIR.000000000001193.
- [23] Darkner S, Chen X, Hansen J, et al. Recurrence of arrhythmia following short-term oral AMIOdarone after CATheter ablation for atrial fibrillation: a double-blind, randomized, placebo-controlled study (AMIO-CAT trial)[J]. Eur Heart J, 2014, 35 (47): 3356-3364. DOI: 10.1093/eurheartj/ehu354.
- [24] Verma A, Jiang C-Y, Betts T R, et al. Approaches to catheter ablation for persistent atrial fibrillation[J]. N Engl J Med, 2015, 372 (19): 1812-1822. DOI: 10.1056/NEJMoa1408288.
- [25] Taylor C J, Ordóñez-Mena J M, Roalfe A K, et al. Trends in survival after a diagnosis of heart failure in the United Kingdom 2000-2017: population based cohort study[J]. BMJ, 2019, 364: l223. DOI: 10.1136/bmj.l223.
- [26] Chinese Medical Association Cardiovascular Medicine Branch, China Medical Doctor Association Cardiovascular Internal Medicine Branch, China Medical Doctor Association Heart Failure Professional Committee, etc. China Heart Failure Diagnosis and Treatment Guidelines 2024 [J]. Chinese Journal of Cardiovascular Diseases, 2024,52 (3):235-275. DOI: 10.3760/cma.j.cn112148-20231101-00405.

- [27] Liu Y, Song A, Zang S, et al. Jinlida reduces insulin resistance and ameliorates liver oxidative stress in high-fat fed rats[J]. J Ethnopharmacol, 2015, 162: 244-252. DOI: 10.1016/j.jep.2014.12.040.
- [28] Liu Chao, Zhu Yajun, Liu Yixuan et al. Effects of Jinlida Granules on Mitochondrial Biology and Insulin Sensitivity in Skeletal Muscles [J]. Beijing Journal of Traditional Chinese Medicine, 2019,38(01):30-34. DOI: 10.16025/j.1674-1307.2019.01.007.
- [29] Song Yuzhen, Zhao Jianhong, Wang Junyuan, et al. Effects of Jinlida Granules on Oxidative Stress in Type 2 Diabetes Rat Models [J]. Henan Journal of Traditional Chinese Medicine, 2013,33(06):875-876. DOI: 10.16367/j.issn.1003-5028.2013.06.085.
- [30] Shi Jingli, Wu Ying, Song Yuping et al. The protective effect of Jinlida Granules on pancreatic B cells in diabetic rats [J]. Journal of the Second Military Medical University, 2012,33(04):385-389.
- [31] Tang Yanga, Wang Jing, Yang Jiaxiang. The hypoglycemic effect of Jinlida Granules on blood glucose and related factors in mice with low sugar load [J]. Journal of China Medical University, 2019,48(02):159-163.
- [32] Zang S-S, Song A, Liu Y-X, et al. Chinese medicine Jinlida (JLD) ameliorates high-fat-diet induced insulin resistance in rats by reducing lipid accumulation in skeletal muscle[J]. Int J Clin Exp Med, 2015 (3): 4620-4634.
- [33] Jin Xin, Zhang Huixin, Zhang Yanfen, et al. Zhonglida on the expression changes of lipid transportase-like in skeletal muscle of ApoE-/-mice induced by high fat [J]. China Journal of Traditional Chinese Medicine, 2015,40(06):1156-1160.
- [34] Chen Wei, Wang Zhiyang, Fu Youjuan, et al. The Effects of Jinlida Granules on β Islet Cell Proliferation and Apoptosis in Mice Under High Glucose Conditions [J]. Medical Herald, 2022,41(09):1312-1317.
- [35] Chen Wei, Wang Zhiyang, Fu Youjuan, et al. Study on the Protective Effect of Jinlida Granules on MIN6 Cells Under High Glucose Conditions [J]. Journal of South China National Defense Medical College, 2022,36(08):594-598.
- [36] Liu Yan, Li Cuiru, Chang Liping, et al. The effects of Jinlida Granules on metabolic disorders and FGF21/AMPK signaling pathway in high-fat diet-induced obese mice [J]. Chinese Herbal Medicine, 2021,52(05):1351-1359.
- [37] Jin Xin, Zhang Huixin, Cui Wenwen. Effects of Jinlida Granules on Skeletal Muscle DGAT1 in High-Lipid-Induced Insulin-Resistant ApoE-/-Mice [J]. 2015,38(06):1237-1241. DOI: 10.13863/j.issn1001-4454.2015.06.032.
- [38] Zhang Hui, Zhou Hongru, Hao Yuanyuan, et al. Traditional Chinese Medicine Jinlida Granules improved metabolic disorders in mice fed a high-fat diet by enhancing brown adipose tissue activity [J]. Journal of Pharmacology and Toxicology of China, 2019,33(09):748.
- [39] Zang Shasha, Liu Yixuan, Song Guangyao, et al. Effects of Jinlida on skeletal muscle lipid deposition and mitochondrial function in insulin-resistant rats []]. Traditional Chinese

- Medicine, 2014,36(07):1371-1376.
- [40] Wang D, Tian M, Qi Y, et al. Jinlida granule inhibits palmitic acid induced-intracellular lipid accumulation and enhances autophagy in NIT-1 pancreatic β cells through AMPK activation[J]. J Ethnopharmacol, 2015, 161. DOI: 10.1016/j.jep.2014.12.005.
- [41] Jin Xin, Zhang Huixin, Cui Wenwen, et al. The effects of Jinlida Granules on skeletal muscle SREBP-1c in ApoE-/-mice with high-fat-induced insulin resistance [J]. Traditional Chinese Medicine, 2015,37(04):705-710.
- [42]Jin Xin, Zhang Yanfen, Mi Yao, et al. The effects of Jinlida on cholesterol-related genes in skeletal muscle of ApoE-/-mice induced by high lipid [J]. China Journal of Pharmacology, 2014,30(11):1600-1604.
- [43] Zang Shasha, Liu Yixuan, Song Guangyao et al. Effects of Jinlida on GLUT4 Expression in Skeletal Muscle of Insulin-Resistant Rats [J]. Hebei Medical Journal, 2014,36(15):2259-2261.
- [44] Liu Yixuan, Zang Shasha, Song Guangyao, et al. Effects of Traditional Chinese Medicine Jinlida on Liver Oxidative Stress and JNK/p38MAPK Pathways in High-Lipid-Feeding Rats [J]. Journal of Chinese Medicine, 2015,30(06):2156-2159.
- [45] Liu Hongli, Meng Linghua, Tian Jinyue, et al. Jinlida United Tongxinluo Reduces Endoplasmic Reticulum Apoptosis in Renal Microvascular Endothelial Cells under High-Glycemic Conditions [J]. China Journal of Pathophysiology, 2020,36(08):1375-1381.
- [46] Chen Liang, Zhang Cheng, Ding Yingjun. Effects of Tongxinluo Capsules combined with Jinlida Granules on the TGF- β 1/Smad Signaling Pathway in Diabetic Nephropathy Rats [J]. Journal of Chinese Medicine, 2019,34(07):3186-3189.
- [47] Ding Yingjun, Chen Liang, Wang Hairong, et al. The effects of Tongxinluo Ultrafine Powder combined with Jinlida Granules on the Akt/mTOR signaling pathway in diabetic nephropathy rats [J]. China Journal of Experimental Formulas, 2016,22(05):110-114.DOI: 10.13422/j.cnki.syfjx.2016050110.
- [48] Ji H, Zhao X, Chen X, et al. Jinlida for Diabetes Prevention in Impaired Glucose Tolerance and Multiple Metabolic Abnormalities: The FOCUS Randomized Clinical Trial[J]. JAMA Intern Med, 2024, 184 (7): 727-735. DOI: 10.1001/jamainternmed.2024.1190.
- [49] Pan J, Xu Y, Chen S, et al. The Effectiveness of Traditional Chinese Medicine Jinlida Granules on Glycemic Variability in Newly Diagnosed Type 2 Diabetes: A Double-Blinded, Randomized Trial[J]. J Diabetes Res, 2021, 2021: 6303063. DOI: 10.1155/2021/6303063.
- [50] Lian F, Tian J, Chen X, et al. The Efficacy and Safety of Chinese Herbal Medicine Jinlida as Add-On Medication in Type 2 Diabetes Patients Ineffectively Managed by Metformin Monotherapy: A Double-Blind, Randomized, Placebo-Controlled, Multicenter Trial[J]. PLoS One, 2015, 10 (6): e0130550. DOI: 10.1371/journal.pone.0130550.
- [51] Lian F, Jin D, Bao Q, et al. Effectiveness of traditional Chinese medicine Jinlida granules as an add-on therapy for type 2 diabetes: A system review and meta-analysis of randomized controlled trials[J]. J Diabetes, 2019, 11 (7): 540-551. DOI: 10.1111/1753-0407.12877.
- [52] National Adverse Drug Reaction Monitoring Center. Direct reporting system for adverse

- drug reactions by marketing authorization holders[DB/OL]. (2025-03-31). https://daers.adrs.org.cn
- [53] Cheng Y T, Yang Y J, Zhang H T, et al. Pretreatment with Tongxinluo protects porcine myocardium from ischaemia/reperfusion injury through a nitric oxide related mechanism[J]. Chin Med J (Engl), 2009 (13): 1529-38.
- [54] Li X D, Yang Y J, Geng Y J, et al. Tongxinluo reduces myocardial no-reflow and ischemia-reperfusion injury by stimulating the phosphorylation of eNOS via the PKA pathway[J]. Am J Physiol Heart Circ Physiol, 2010, 299 (4): H1255-61. DOI: 10.1152/ajpheart.00459.2010.
- [55] Chen G, Xu C, Gillette T G, et al. Cardiomyocyte-derived small extracellular vesicles can signal eNOS activation in cardiac microvascular endothelial cells to protect against Ischemia/Reperfusion injury[J]. Theranostics, 2020, 10 (25): 11754-11774. DOI: 10.7150/thno.43163.
- [56] Li X D, Yang Y J, Cheng Y T, et al. Protein kinase A-mediated cardioprotection of Tongxinluo relates to the inhibition of myocardial inflammation, apoptosis, and edema in reperfused swine hearts[J]. Chin Med J (Engl), 2013 (8): 1469-79.
- [57] Xiong Liang, Huang Congxin, Huang He, et al. Effects of Tongxinluo Capsules on Myocardial Microcirculation, Cardiac Function, and Electrophysiology in Rabbit After Myocardial Infarction [J]. Journal of 疑难病, 2014,13(04):331-335.
- [58] Wu Yiling, Yuan Guoqiang, You Jiahua, et al. Experimental study on the aortic endothelium-protective mechanism of Tongxinluo ultrafine powder in rabbits with high-fat diet [J]. China Journal of Pathophysiology, 2007(04):629-633.
- [59] Liu S, Chang L, Wei C. The sonic hedgehog pathway mediates Tongxinluo capsule-induced protection against blood-brain barrier disruption after ischaemic stroke in mice[J]. Basic Clin Pharmacol Toxicol, 2019, 124 (6): 660-669. DOI: 10.1111/bcpt.13186.
- [60] Liu S, Wei C, Kang N, et al. Chinese medicine Tongxinluo capsule alleviates cerebral microcirculatory disturbances in ischemic stroke by modulating vascular endothelial function and inhibiting leukocyte-endothelial cell interactions in mice: A two-photon laser scanning microscopy study[J]. Microcirculation, 2018, 25 (2). DOI: 10.1111/micc.12437.
- [61] Lang Yansong, Mi Hongying, Liu Meizhi, et al. Intervention of Tongxinluo combined with Atorvastatin and Aspirin on the Expression of Extravascular Inflammatory Factors in Early Atherosclerosis of Rabbit Arteries [J]. China Journal of Pathophysiology, 2015,31(01):154-159.
- [62] Chen W Q, Zhong L, Zhang L, et al. Chinese medicine tongxinluo significantly lowers serum lipid levels and stabilizes vulnerable plaques in a rabbit model[J]. J Ethnopharmacol, 2009, 124 (1): 103-10. DOI: 10.1016/j.jep.2009.04.009.
- [63] Zhang L, Liu Y, Lu X T, et al. Traditional Chinese medication Tongxinluo dose-dependently enhances stability of vulnerable plaques: a comparison with a high-dose simvastatin therapy[J]. Am J Physiol Heart Circ Physiol, 2009, 297 (6): H2004-14. DOI:

- 10.1152/ajpheart.00208.2009.
- [64] Ma L, Liu X, Lu H, et al. Traditional Chinese medication Tongxinluo inhibits inflammatory angiogenesis via Bmx/NF-κB/MAPK pathways[J]. EUR HEART J SUPPL, 2015, 17 (suppl_B): B13-B22. DOI: 10.1093/eurheartj/suv020.
- [65] Qi Y, Liu W, Yan X, et al. Tongxinluo May Alleviate Inflammation and Improve the Stability of Atherosclerotic Plaques by Changing the Intestinal Flora[J]. Front Pharmacol, 2022, 13: 805266. DOI: 10.3389/fphar.2022.805266.
- [66] Zhang L, Li Y, Yang B S, et al. A Multicenter, Randomized, Double-Blind, and Placebo-Controlled Study of the Effects of Tongxinluo Capsules in Acute Coronary Syndrome Patients with High On-Treatment Platelet Reactivity[J]. Chin Med J (Engl), 2018, 131 (5): 508-515. DOI: 10.4103/0366-6999.226064.
- [67] Su W, Sun A, Xu D, et al. Tongxinluo inhibits oxidized low-density lipoprotein-induced maturation of human dendritic cells via activating peroxisome proliferator-activated receptor gamma pathway[J]. J Cardiovasc Pharmacol, 2010, 56 (2): 177-83. DOI: 10.1097/FJC.0b013e3181e5f0f8.
- [68] Li Q, Li N, Cui H H, et al. Tongxinluo exerts protective effects via anti-apoptotic and pro-autophagic mechanisms by activating AMPK pathway in infarcted rat hearts[J]. Exp Physiol, 2017, 102 (4): 422-435. DOI: 10.1113/ep086192.
- [69] Bai W W, Xing Y F, Wang B, et al. Tongxinluo Improves Cardiac Function and Ameliorates Ventricular Remodeling in Mice Model of Myocardial Infarction through Enhancing Angiogenesis[J]. Evid Based Complement Alternat Med, 2013, 2013: 813247. DOI: 10.1155/2013/813247.
- [70] Xie Lian-na, Zeng Ding-yin, Zhang Hai-shan, et al. Tongxinluo prevents vascular spasm by reducing circulating angiotensin II levels and inhibiting local oxidative stress responses [J]. China Journal of Arteriosclerosis, 2010,18(09):677-681.DOI: 10.20039/j.cnki.1007-3949.2010.09.004.
- [71] Xie L N, Zeng D Y, Zhang H S, et al. Effect of tongxinluo on vasoconstriction induced by the chronic injury of the adventitia in the rat carotid artery[J]. J Ethnopharmacol, 2010, 131 (2): 300-5. DOI: 10.1016/j.jep.2010.06.037.
- [72] Guan Q, Liu M, Liu R, et al. Tongxinluo Induces nNOS Expression Through ERK Activation: Possible Contribution to the Effects of Tongxinluo to Attenuate Vasoconstriction[J]. J Cardiovasc Pharmacol, 2015, 66 (1): 9-15. DOI: 10.1097/fjc.0000000000000228.
- [73] Wu Xiaoli, Wang Hongtao, Zhang Huixin et al. Changes in BDNF Expression and the Effects of Tongxinluo on the Ischemic Area in Rat Brain After Ischemia [J]. Journal of 疑难病, 2009,8(05):265-268+321.
- [74] Wu Xiaoli, Wu Yiling, Wang Hongtao, et al. Changes in VEGF Expression and the Effects of Tongxinluo on the Ischemic Area in Rat Brain After Ischemia [J]. China Journal of Pharmaceutical Technology Economics and Management, 2009,3(7):56-62.

- [75] Wu Yiling, Wu Zhengguo, Yuan Guoqiang, et al. Protective effects of Tongxinluo on ischemic microvessels in experimental middle cerebral artery occlusion rats [J]. Chinese Journal of Neurology, 2007,40(01):54-58.
- [76] Yu Z, Cai M, Li X, et al. Neuroprotective effects of Tongxinluo on focal cerebral ischemia and reperfusion injury in rats associated with the activation of the MEK1/2/ERK1/2/p90RSK signaling pathway[J]. Brain Res, 2018, 1685. DOI: 10.1016/j.brainres.2018.01.036.
- [77] Yu Z-H, Cai M, Xiang J, et al. PI3K/Akt pathway contributes to neuroprotective effect of Tongxinluo against focal cerebral ischemia and reperfusion injury in rats[J]. J Ethnopharmacol, 2016, 181. DOI: 10.1016/j.jep.2016.01.028.
- [78] Chang L, Hu L, Wei C, et al. Chinese medicine Tongxinluo capsule protects against blood-brain barrier disruption after ischemic stroke by inhibiting the low-density lipoprotein receptor-related protein 1 pathway in mice[J]. J Stroke Cerebrovasc Dis, 2020, 29 (9): 105071. DOI: 10.1016/j.jstrokecerebrovasdis.2020.105071.
- [79] Cheng X, Hou Z, Sun J, et al. Protective effects of Tongxinluo on cerebral ischemia/reperfusion injury related to Connexin 43/Calpain II/Bax/Caspase-3 pathway in rat[J]. J Ethnopharmacol, 2017, 198: 148-157. DOI: 10.1016/j.jep.2017.01.004.
- [80] Wang X, Huang X, Yang M, et al. Tongxinluo promotes axonal plasticity and functional recovery after stroke[J]. Transl Neurosci, 2020, 11 (1): 428-438. DOI: 10.1515/tnsci-2020-0127.
- [81] Chen L, Wang X, Chen X, et al. Tongxinluo attenuates neuronal loss and enhances neurogenesis and angiogenesis in the ipsilateral thalamus and improves neurological outcome after focal cortical infarction in hypertensive rats[J]. Restor Neurol Neurosci, 2014, 32 (4): 533-546. DOI: 10.3233/RNN-140403.
- [82] Chen L, Wang X, Zhang J, et al. Tongxinluo Enhances Neurogenesis and Angiogenesis in Peri-Infarct Area and Subventricular Zone and Promotes Functional Recovery after Focal Cerebral Ischemic Infarction in Hypertensive Rats[J]. Evid Based Complement Alternat Med, 2016, 2016: 8549590. DOI: 10.1155/2016/8549590.
- [83] Feng R, Lin Q, Wei D, et al. Tongxinluo capsule in combination with conventional therapies for stable angina pectoris: A meta-analysis and systematic review[J]. Medicine, 2023, 102 (41): e35405. DOI: 10.1097/md.000000000035405.
- [84] Wang Qi. Clinical efficacy observation of Tongxinluo Capsules combined with conventional Western medicine in treating unstable angina [J]. Journal of Chinese Medicine, 2015(5):104-106.
- [85] Song Hongxia. Clinical observation of Tongxinluo Capsules combined with Atorvastatin Calcium Tablets and Trimetazidine Hydrochloride Tablets in the treatment of coronary heart disease angina [J]. Hebei Traditional Chinese Medicine, 2017,39(7):1053-1056.DOI: 10.3969/j.issn.1002-2619.2017.07.023.
- [86] Xin Ling, Li Jianying, Wang Yong et al. Clinical observation of Tongxinluo Capsules in the

- treatment of unstable angina [J]. Journal of Cardiovascular Diseases, 2008,16(4):256-259. DOI: 10.3969/j.issn.1008-5971.2008.04.005.
- [87] Chen Rongxing and Li Linlin. Interventional effects of Tongxinluo Capsules on unstable angina[J].Guizhou Medical Journal,2009,33(10):923-924.DOI: 10.3969/j.issn.1000-744X.2009.10.030.
- [88] Yu Ning, Chen Longfei. Analysis of 68 Cases of Treatment with Tongxinluo Capsules for Unstable Angina Pectoris [J]. China Contemporary Medicine, 2009,16(13):104-105. DOI: 10.3969/j.issn.1674-4721.2009.13.063.
- [89] Yu Ping, Na Kun. Clinical observation of clopidogrel combined with Tongxinluo Capsules in treating 30 cases of unstable angina [J]. Anhui Pharmaceutical, 2011,15(3):356-358. DOI: 10.3969/j.issn.1009-6469.2011.03.042.
- [90] Zhang Rongzhen. 43 cases of unstable angina pectoris treated with Tongxinluo Capsules [J]. Guangming Journal of Traditional Chinese Medicine, 2011,26(11):2233-2234. DOI: 10.3969/j.issn.1003-8914.2011.011.034.
- [91] Sun Shujuan, Zhang Ping, Li Wenzhe et al. Clinical efficacy observation of Tongxinluo combined with aspirin in treating unstable angina [J]. Journal of Traditional Chinese Medicine, 2015(3):126-128.
- [92] Li Huixia. A Study on the Therapeutic Effects of Tongxinluo Capsules Combined with Atorvastatin Calcium Tablets in the Treatment of Unstable Angina Pectoris in Coronary Heart Disease[J].HenanMedicalResearch,2017,26(23):4263-4265.DOI:
- 10.3969/j.issn.1004-437X.2017.23.017.
- [93] Hui Hui, Zhang Ming, Peng Zhiguo, et al. Effects of Tongxinluo Capsules on Myocardial Enzymes and Electrocardiogram in Patients with Unstable Angina [J]. China Journal of Gerontology, 2018, 38(9): 2080-2082. DOI: 10.3969/j.issn.1005-9202.2018.09.014.
- [94]Zhao Zhen-tao and Yue Zhao-han. The Effects of Tongxinluo Capsules Combined with Clopidogrel on Symptom Improvement and ECG Changes in Elderly Patients with Coronary Heart Disease and Unstable Angina [J]. World Journal of Medical Information Abstracts, 2018,18(20):116-117.DOI: 10.19613/j.cnki.1671-3141.2018.20.078.
- [95] Peng Gengxing and Li Shaomin. Clinical observation of Tongxinluo Capsule in treating 66 cases of unstable angina [J]. Journal of Integrated Chinese and Western Medicine for Cardiovascular Diseases, 2010,8(03):285-286.
- [96] Sun Jianhua. Therapeutic effect observation of Tongxinluo Capsule in unstable angina[J]. Journal of Modern Integrated Chinese and Western Medicine, 2010,19(22):2786-2787.
- [97] Zhan Yanming, Zhu Feng, Xu Xuanping. Clinical observation of Tongxinluo in the treatment of unstable angina [J]. Journal of Modern Integrated Chinese and Western Medicine, 2011,20(11):1331-1332.
- [98] Guo Wanji, Lai Chunlin, Qin Zhongsheng, et al. The relationship between C-reactive protein and lipoprotein (a) and angina pectoris, as well as the impact of Tongxinluo intervention [J]. Journal of Integrated Chinese and Western Medicine in Cardiovascular

Diseases, 2008(10):1147-1149.

- [99] Wang Haibo. Analysis and Research on the Effect of Tongxinluo in Treating Variant Angina Pectoris with Coronary Artery Disease [J]. Chinese Journal of Integrated Traditional and Western Medicine in Cardiovascular Diseases, 2018,6(28):145+147. DOI: 10.16282/j.cnki.cn11-9336/r.2018.28.115.
- [100] Ma Guobin, Yu Bijie, Zheng Jin, et al. Clinical efficacy of Tongxinluo Capsules in treating variant angina pectoris associated with coronary heart disease and its effects on endothelial function []]. Journal of Traditional Chinese Medicine Clinical Research, 2016,8(30):25-27.
- [101] Fang Yongyou, Hu Zhengqing, Wu Gang, et al. Efficacy of Tongxinluo Capsules in Treating Cardiac X Syndrome with Diabetes Mellitus [J]. Journal of 疑难病, 2018,17(4):325-328. DOI: 10.3969/j.issn.1671-6450.2018.04.001.
- [102] Qin Gang, Jia Yongping, and Lü Jiyuan. The Interventional Effects of Tongxinluo Capsules Combined with Nicorandil and Simvastatin on Slow Blood Flow in Coronary Arteries [J]. Journal of Integrated Chinese and Western Medicine in Cardiovascular Diseases, 2017,15(22):2807-2810. DOI: 10.3969/j.issn.1672-1349.2017.22.003.
- [103] Lu Hang, Ma Rongrong. Clinical study on the treatment of X syndrome with coronary blood flow reserve abnormalities using Tongxinluo Capsules [J]. Journal of Rare Diseases, 2007,6(11):655-657.DOI: 10.3969/j.issn.1671-6450.2007.11.006.
- [104] Zhou Jiang and Guo Jingtao. Clinical study on prevention of restenosis after stent grafting in coronary heart disease patients with Tongxinluo [J]. Hebei Medical Journal, 2007,13(10):1188-1191. DOI: 10.3969/j.issn.1006-6233.2007.10.024.
- [105] Xiao Hongbing, Zhang Dade, Gu Jun. The Effects of Tongxinluo on C-reactive Protein and Prognosis After Coronary Stent Surgery [J]. Journal of Interventional Radiology, 2007,16(8):520-522. DOI: 10.3969/j.issn.1008-794X.2007.08.005.
- [106] Wang Yanhong and Shi Huina. Efficacy Observation of Tongxinluo Capsules in Preventing Restenosis After Coronary Stent Surgery [J]. Journal of Modern Integrated Chinese and Western Medicine, 2009,18(1):39. DOI: 10.3969/j.issn.1008-8849.2009.01.028.
- [107] Wang Feng, Zhao Ruonan, Cheng Yutong. The Impact of Tongxinluo Capsules Combined with Dual Antibody Platelet Therapy on Prognosis in Aspirin-Resistant Patients After PCI [J]. Hebei Medical Journal, 2018,24(7):1081-1086. DOI: 10.3969/j.issn.1006-6233.2018.07.007.
- [108] Lu Hongwei, Zhang Jian, Chen Xin, et al. Clinical observation of Tongxinluo Capsules combined with Western medicine in preventing coronary re 狭窄 after percutaneous coronary intervention in 90 cases [J]. Journal of Traditional Chinese Medicine, 2014,55(24):2117-2120. DOI: 10.13288/j.11-2166/r.2014.24.013.
- [109] Liu Lei, Jiang Tao. "Synergistic Intervention of Tongxinluo Capsules and Atorvastatin on Intra-Stent Restenosis and Inflammatory Factors After PCI Surgery" [J]. Journal of Integrated Chinese and Western Medicine in Cardiovascular Diseases, 2017,15(7):769-771.DOI: 10.3969/j.issn.1672-1349.2017.07.001.
- [110] Liang Yanmin, Wang Zhanjun, Su Xiaoyan. Efficacy Evaluation of Tongxinluo Capsules

- in Postoperative Restenosis of Patients with Coronary Artery Interventional Therapy for Myocardial Infarction [J]. China Journal of Integrated Traditional Chinese and Western Medicine, 2010,17(3):175-176.DOI: 10.3969/j.issn.1008-9691.2010.03.017.
- [111] Zhai Xiaoju, Ma Guang, and Li Songlin. Postoperative Evaluation of Pregliflozin Combined with Tongxinluo Capsules in Patients with Type 2 Diabetes Mellitus and Coronary Heart Disease Receiving Percutaneous Coronary Intervention with Drug-eluting Stents [J].

 New Traditional Chinese Medicine, 2019,51(8):141-143.DOI: 10.13457/j.cnki.jncm.2019.08.042.
- [112] Wang Taihao, Cen YunGuang, Tian XuLu, et al. The effects of Tongxinluo Capsules combined with Atorvastatin on serum vWF, hs-CRP, and VEGF levels after PCI for acute coronary syndrome [J]. China Clinical Research, 2019,32(08):1095-1098. DOI: 10.13429/j.cnki.cjcr.2019.08.023.
- [113] Zheng Hua, Teng Zhonghua, Ma Liqin. Effects of Tongxinluo Capsules on C-reactive Protein and Lipid Levels in Patients with Acute Coronary Syndrome After Interventional Surgery [J]. Journal of Difficult Diseases, 2010,9(07):487-488.
- [114] Chen Zhuang, Feng Jing, Jia Zhisheng, et al. Clinical study on the treatment of acute coronary syndrome patients with percutaneous coronary intervention using Tongxinluo combined with ticagrelor [J]. World Journal of Chinese Medicine, 2020,15(20):3084-3087.
- [115] Zhang Xinping, Zhang Yong. The effect of Tongxinluo on long-term efficacy after stent placement in patients with acute myocardial infarction [J]. China Drug and Clinical, 2009,9(03):243-244.
- [116] Xu Zhong and Li Xue. Impact of Tongxinluo on inflammatory factors and early cardiac complications after interventional therapy for acute coronary syndrome patients [J]. Journal of Modern Integrated Chinese and Western Medicine, 2007(02):156-157+159.
- [117] Zhang H T, Jia Z H, Zhang J, et al. No-reflow protection and long-term efficacy for acute myocardial infarction with Tongxinluo: a randomized double-blind placebo-controlled multicenter clinical trial (ENLEAT Trial)[J]. Chin Med J (Engl), 2010 (20): 2858-64.
- [118] Yang Y, Li X, Chen G, et al. Traditional Chinese Medicine Compound (Tongxinluo) and Clinical Outcomes of Patients With Acute Myocardial Infarction: The CTS-AMI Randomized Clinical Trial[J]. JAMA, 2023, 330 (16): 1534-1545. DOI: 10.1001/jama.2023.19524.
- [119] Chen Y, Wang L, Cui Z, et al. Tongxinluo capsules for secondary prevention after ST-segment elevation myocardial infarction: A systematic review and meta-analysis[J]. J Ethnopharmacol, 2025, 342: 119419. DOI: 10.1016/j.jep.2025.119419.
- [120] Zhang M, Liu Y, Xu M, et al. Carotid artery plaque intervention with Tongxinluo capsule (CAPITAL): A multicenter randomized double-blind parallel-group placebo-controlled study[]. Sci Rep, 2019, 9 (1): 4545. DOI: 10.1038/s41598-019-41118-z.
- [121] Dong Y, Jiang K, Li Z, et al. Tongxinluo and Functional Outcomes Among Patients With Acute Ischemic Stroke: A Randomized Clinical Trial[J]. JAMA Netw Open, 2024, 7 (9): e2433463. DOI: 10.1001/jamanetworkopen.2024.33463.

- [122] Yan Bo, Zhou Dong, Guo Fuqiang, et al. Multicenter prospective randomized controlled clinical study on Tongxinluo for ischemic stroke patients (acute and subacute phases) [J]. West China Journal of Medicine, 2008(05):945-946.
- [123]Wu Yiling, Li Tao, Li Yan, et al. Clinical study on the treatment of stroke with ultra-fine pulverized Tongxinluo capsules [J]. China Journal of Traditional Chinese Medicine, 2007 (18):1928-1931.
- [124] Zhou Hongqing, Wang Deren, Zhang Canfei, et al. A Systematic Evaluation of the Efficacy and Safety of Tongxinluo Capsules in the Treatment of Acute Ischemic Stroke [J]. China Journal of Evidence-Based Medicine, 2013,13(07):844-851.
- [125] Cong Lingnan, Cha Peng. Meta Analysis of the Efficacy and Safety of Tongxinluo Capsules in Treating Acute Ischemic Stroke [J]. China Prescriptions, 2024,22(07):26-30.
- [126] Li N, Ma K J, Wu X F, et al. Effects of Chinese herbs on multiple ion channels in isolated ventricular myocytes[J]. Chin Med J (Engl), 2007 (12): 1068-74.
- [127] Li Ning, Huo Youping, and Ma Kejuan et al. Effects of meridian-connecting herbs on sodium-calcium ion channels in cardiomyocytes [J]. Chinese Journal of Traditional Medicine, 2007,87(14):995-998. DOI: 10.3760/j:issn:0376-2491.2007.14.016.
- [128] Zhang K, Shi L, Tang H J, et al. Effect of Shen Song Yang Xin Capsule on Myocardial Electrophysiology of Acute Atrial Fibrillation in Canine Model[J]. Chin Med J (Engl), 2017, 130 (20): 2513-2514. DOI: 10.4103/0366-6999.216404.
- [129] Zhang Tiejun, Zhang Caiping, Qi Shuying, et al. Effects of Shen Yang Xin Capsules on Transmembrane Heterogeneity of Instantaneous Extracellular Potassium Currents in Rabbit Myocardial Infarction One Week Post-Event [J]. Journal of Rare Diseases, 2010,9(1):3-5.DOI: 10.3969/j.issn.1671-6450.2010.01.002.
- [130] Li Ning, Wu Xiangfeng, Ma Kejuan, et al. Effects of Shen Song Yang Xin Capsules on Potassium Channels in Ventricular Muscle Cells [J]. Journal of Investigative Medicine, 2007,6(3):133-137. DOI: 10.3969/j.issn.1671-6450.2007.03.002.
- [131] Zhao Y, Gao F, Zhang Y, et al. Shensong Yangxin capsules prevent ischemic arrhythmias by prolonging action potentials and alleviating Ca2+ overload[J]. Mol Med Rep, 2016, 13 (6): 5185-92. DOI: 10.3892/mmr.2016.5203.
- [132] Cheng Linzhong, Cheng Yurong, Li Qing. The inhibitory effect of Can Song Yang Xin Capsules on L-type calcium currents and potassium currents in rat ventricular muscle cells [J]. China Journal of Basic Medicine of Traditional Chinese Medicine,
- [133] Sun L P, Li N, Wu Y L, et al. Effects of Shensong Yangxin capsule on pacemaker channels

encoded by human HCN4 gene[J]. Chin Med J (Engl), 2010 (21): 3148-50.

2015,21(7):806-808,823.

- [134] Wang Zhiquan, Jiang Xuejun, Chao Shengping, et al. Effects of Canthopanax Ginseng Yangxin Capsules on Kv1.4 Potassium Current Characteristics [J]. Journal of the Heart, 2009,21(6):782-785,789.
- [135] Chai Songbo, Wang Shuoren, Yao Lifang, et al. Study on the Effects of Canthostigma

- Yantaiensis Heart-Nourishing Capsules on Ventricular Restructuring and Isolated Cardiac Action Potential After Myocardial Infarction in Rats [J]. Beijing Journal of Traditional Chinese Medicine, 2009,28(12):967-971.
- [136] Zhang Li, Wang Liankai, Chen Shijian et al. Effects of Fensong Yangxin Capsules on Atrial Restructuring and Arrhythmia in Diabetic Rats [J]. Traditional Chinese Medicine, 2015,37(12):2573-2578.DOI: 10.3969/j.issn.1001-1528.2015.12.001.
- [137] Chen Jiming. Effects of Canthostigma Yantaiensis Yangxin Capsules on Cardiac Muscle Cx40 in Diabetic Rats [D]. Wannan Medical College, Anhui Province, 2017.[138] Yang H J, Kong B, Shuai W, et al. Shensong Yangxin Protects Against Metabolic Syndrome-Induced Ventricular Arrhythmias by Inhibiting Electrical Remodeling[J]. Front Pharmacol, 2020, 11: 993. DOI: 10.3389/fphar.2020.00993.
- [139] Ma J, Yin C, Ma S, et al. Shensong Yangxin capsule reduces atrial fibrillation susceptibility by inhibiting atrial fibrosis in rats with post-myocardial infarction heart failure[J]. Drug Des Devel Ther, 2018, 12: 3407-3418. DOI: 10.2147/dddt.S182834.
- [140] Liu B L, Cheng M, Hu S, et al. Effect of the Shensong Yangxin Capsule on Energy Metabolism in Angiotensin II-Induced Cardiac Hypertrophy[J]. Chin Med J (Engl), 2018, 131 (19): 2287-2296. DOI: 10.4103/0366-6999.241819.
- [141] Dang S, Huang C X, Wang X, et al. Shensong Yangxin (SSYX) ameliorates disordered excitation transmission by suppressing cardiac collagen hyperplasia in rabbits with chronic myocardial infarction[J]. J Huazhong Univ Sci Technolog Med Sci, 2016, 36 (2): 162-167. DOI: 10.1007/s11596-016-1560-4.
- [142] Shen N, Li X, Zhou T, et al. Shensong Yangxin Capsule prevents diabetic myocardial fibrosis by inhibiting TGF-β1/Smad signaling[J]. J Ethnopharmacol, 2014, 157: 161-70. DOI: 10.1016/j.jep.2014.09.035.
- [143] Zhao H Y, Zhang S D, Zhang K, et al. Effect of Shensong Yangxin on the Progression of Paroxysmal Atrial Fibrillation is Correlated with Regulation of Autonomic Nerve Activity[J]. Chin Med J (Engl), 2017, 130 (2): 171-178. DOI: 10.4103/0366-6999.197997.
- [144] Feng L, Gong J, Jin Z Y, et al. Electrophysiological effects of Chinese medicine Shen song Yang xin (SSYX) on Chinese miniature swine heart and isolated guinea pig ventricular myocytes[J]. Chin Med J (Engl), 2009 (13): 1539-43.
- [145] Zhang J, Li H, Wang D, et al. Shensong Yangxin Capsule Reduces the Susceptibility of Arrhythmia in db/db Mice via Inhibiting the Inflammatory Response Induced by Endothelium Dysfunction[J]. Drug Des Devel Ther, 2023, 17: 313-330. DOI: 10.2147/dddt.S392328.
- [146] Yang H J, Kong B, Shuai W, et al. Shensong Yangxin attenuates metabolic syndrome-induced atrial fibrillation via inhibition of ferroportin-mediated intracellular iron overload[J]. Phytomedicine, 2022, 101: 154086. DOI: 10.1016/j.phymed.2022.154086.
- [147] Jiang C, Wang X, Dang S, et al. Chinese Medicine Shensong Yangxin Capsule ()
 Ameliorates Myocardial Microcirculation Dysfunction in Rabbits with Chronic Myocardial

- Infarction[J]. Chin J Integr Med, 2021, 27 (1): 24-30. DOI: 10.1007/s11655-018-2578-1.
- [148] Zou J G, Zhang J, Jia Z H, et al. Evaluation of the traditional Chinese Medicine Shensongyangxin capsule on treating premature ventricular contractions: a randomized, double-blind, controlled multicenter trial[J]. Chin Med J (Engl.), 2011 (1): 76-83.
- [149] Wang X, Hu D, Dang S, et al. Effects of Traditional Chinese Medicine Shensong Yangxin Capsules on Heart Rhythm and Function in Congestive Heart Failure Patients with Frequent Ventricular Premature Complexes: A Randomized, Double-blind, Multicenter Clinical Trial[J]. Chin Med J (Engl), 2017, 130 (14): 1639-1647. DOI: 10.4103/0366-6999.209906.
- [150] Zhang F, Zou J, Yu H, et al. Acute Efficacy of a Traditional Chinese Medicine for Treatment of Frequent Premature Ventricular Contractions in Patients with Concomitant Sinus Bradycardia: Results from a Double-Blind, Placebo-Controlled, Multicentre, Randomized Clinical Trial[J]. Evid Based Complement Alternat Med, 2019, 2019: 3917282. DOI: 10.1155/2019/3917282.
- [151] Wu Yiling, Gu Chunhua, Gao Xuedong, et al. Randomized double-blind multicenter clinical study on the therapeutic effect of Can Song Yang Xin Capsules in treating ventricular premature beats in coronary heart disease [J]. Journal of Rare Diseases, 2007(08):449-452. [152] Liu Yaqin, Li Shuling, Qi Quan. Clinical Observation of Can Song Yang Xin Capsules in Treating Elderly Patients with Coronary Heart Disease and Ventricular Premature Beats: The Type of Qi-Yin Deficiency and Heart Network Stasis [J]. Western Chinese Medicine, 2024,37(04):139-141.
- [153] Zhang Jiamin and Fan Xiufeng. Efficacy Observation of Can Song Yang Xin Capsules Combined with Metoprolol Sustained-Release Tablets in Treating Ventricular Premature Contractions in Elderly Coronary Heart Disease Patients [J]. Journal of Integrated Chinese and Western Medicine for Cardiovascular Diseases, 2020,18(11):1756-1758.
- [154] Xu Guicheng, Huo Baomin, Wu Yiling, et al. Randomized double-blind, positive drug-controlled, multicenter clinical study on the treatment of ventricular premature beats in coronary heart disease with Can Song Yang Xin Capsules [J]. China Journal of Basic Medicine of Traditional Chinese Medicine, 2003 (03):37-40.
- [155] Zhang Lijuan, Li Changhong, Sheng Huaotang. Clinical observation on the improvement of ventricular premature beats in patients with coronary heart disease by Can Song Yang Xin Capsules [J]. China Journal of Basic Medicine of Traditional Chinese Medicine, 2013,19(07):790-791+800. DOI: 10.19945/j.cnki.issn.1006-3250.2013.07.030.
- [156] Yang Baolin, Li Ying, Li Yan. Clinical Study on the Efficacy and Safety of Fansong Yangxin Capsules in Treating Ventricular Premature Contractions [J]. China Journal of Basic Medicine of Traditional Chinese Medicine, 2013,19(07):787-789.
- [157] Qin Fang, Yan Yafei, Wu Shida. Efficacy Observation of Can Song Yang Xin Capsules in Treating Ventricular Premature Beats [J]. Practical Hospital Clinical Journal, 2007(04):90-91. [158] Chen Yunyu and Lai Guoyong. Therapeutic Effects of Fushan Yangxin Capsules Combined with Bisoprolol Fumarate on Heart Failure with Ventricular Premature Beats [J].

Journal of Northwest Pharmaceutical, 2023,38(04):137-141.

[159] Gu Chunhua, Wu Yiling, Tian Shuyan, et al. Effects of Can Song Yang Xin Capsules on Ventricular Premature Beats in Coronary Heart Disease and Impact on Cardiac Autonomic Nervous System Function [J]. China Journal of Integrated Traditional Chinese and Western Medicine, 2005(09):783-786.

[160] Liu Jie, Yan Xuejiao, Zhu Tiantian. Clinical efficacy of Can Song Yang Xin Capsules combined with Amiodarone Hydrochloride Tablets in treating ventricular premature beats in coronary heart disease and effects on serum NO and TXB2 levels [J]. Journal of Chinese Medicine, 2023,41(12):82-85.DOI: 10.13193/j.issn.1673-7717.2023.12.014.

[161] Peng Xiaojing, Li Minghui. Clinical study on the treatment of idiopathic ventricular premature beats with Fensong Yangxin Capsules combined with Betaloc [J]. China Journal of Basic Medicine of Traditional Chinese Medicine, 2014,20(08):1154-1155. DOI: 10.19945/j.cnki.issn.1006-3250.2014.08.060.

[162] Guo Gang and Chao Zhi. Clinical efficacy observation of Can Song Yang Xin Capsules combined with Betaloc in treating ventricular premature beats [J]. Traditional Chinese Medicine, 2017,39(01):225-227.

[163] Liu Y, Li N, Jia Z, et al. Chinese medicine shensongyangxin is effective for patients with bradycardia: results of a randomized, double-blind, placebo-controlled multicenter trial[J]. Evid Based Complement Alternat Med, 2014, 2014: 605714. DOI: 10.1155/2014/605714.

[164] Wang Aihu, Pu Jielin, Qi Xiaoyong, et al. Multicenter clinical study on the treatment of paroxysmal atrial fibrillation with Canthopanax Yangxin Capsules [J]. Chinese Journal of Medicine, 2011,91(24):1677-1681.

[165] He Wenfeng, Xue Cheng, Zheng Jiankang, et al. The effects of Shen Song Yang Xin Capsules combined with sacubitril and valsartan on hs-CRP, BNP, Ang II, and cardiac function in paroxysmal atrial fibrillation complicated by chronic heart failure [J]. Journal of Chinese Medicine, 2024,42(06):95-98. DOI: 10.13193/j.issn.1673-7717.2024.06.018.

[166] Xiao Jinping, Fu Jingqiu, Li Xiaolei et al. Clinical efficacy and safety analysis of Can Song Yang Xin Capsules in treating hypertension complicated by paroxysmal atrial fibrillation [J]. Western Chinese Medicine, 2021,34(08):110-112.

[167] Liu Hua and Zhang Jiawen. Treatment of paroxysmal atrial fibrillation with Canthopanax Yangxin Capsules in 60 cases [J]. Shaanxi Journal of Traditional Chinese Medicine, 2011,32(11):1509-1510.

[168] Han Yanhua, Xue Runfa, Zhang Xiufeng. The effect of Can Song Yang Xin Capsules on the frequency of paroxysmal atrial fibrillation episodes [J]. China Journal of Misdiagnosis, 2010,10(28):6827-6828.

[169] Han Hongyan, Zhou Yude, Wang Yan et al. Clinical study on the treatment of paroxysmal atrial fibrillation with Can Song Yang Xin Capsules [J]. Journal of 疑难病, 2007(07):389-391.

[170] Tu Tian, Zhang Xin, Cheng Yaling, et al. Effects of Cantharidin Yangxin Capsules

combined with Valsartan on Sustained Atrial Tachycardia and Left Atrial Function [J]. Journal of Chinese Medicine, 2020,38(02):251-254. DOI: 10.13193/j.issn.1673-7717.2020.02.062.

[171] Liu Jun. Clinical efficacy of sacubitril combined with Shansong Yangxin Capsules in treating paroxysmal atrial fibrillation with chronic heart failure [J]. China Journal of Clinical Pharmacy, 2021,30(02):91-94. DOI: 10.19577/j.1007-4406.2021.02.003.

[172] Jin Yiwu, Jin Zhenyi, Ma Lan, et al. The effects of Metoprolol combined with Can Song Yangxin Capsules on P wave dispersion and plasma high-sensitivity C-reactive protein in patients with paroxysmal atrial fibrillation [J]. China Circulation Journal, 2012,27(05):353-356.

[173] Zhou T, Gong P, Xu M, et al. Efficacy of Shensong Yangxin capsule combined with dronedarone in paroxysmal atrial fibrillation after ablation[J]. Medicine, 2024, 103 (17): e37918. DOI: 10.1097/md.0000000000037918.

[174] Huang H, Liu Y, Shuai W, et al. Atrial tachyarrhythmia prevention by Shensong Yangxin after catheter ablation for persistent atrial fibrillation: the SS-AFRF trial[J]. Eur Heart J, 2024, 45 (40): 4305-4314. DOI: 10.1093/eurheartj/ehae532.

[175] Zhang Guowei, Chen Shouqiang, Zhang Menghe, et al. Impact of Can Song Yang Xin Capsules on Left Heart Function and Quality of Life in Patients with Persistent Atrial Fibrillation After Radiofrequency Ablation [J]. Journal of Rare Diseases, 2023,22(01):8-13+20.

[176] Zhou Jining, Zhong Dian, Wang Fang, et al. Early Recurrence of Atrial Fibrillation After Radiofrequency Ablation: A Case Study of 60 Patients with Supplementary Treatment Using Shansong Yangxin Capsules [J]. Medical Journal of China, 2019,38(08):1022-1025.

[177] Yu Zhuxian, Liu Dongyan. The effect of Can Song Yang Xin Capsules on plasma hypersensitive C-reactive protein and N-terminal bradykinin precursor levels in patients with persistent atrial fibrillation after cardioversion [J]. China Basic Medical Medicine, 2014,21(11):1670-1672.DOI: 10.3760/cma.j.issn.1008-6706.2014.11.030.

[178] Zhuo Chaogui, Wang Shun, Zhang Kai, et al. The preventive effect of Can Song Yang Xin Capsules on recurrence after radiofrequency ablation for atrial fibrillation [J]. Journal of Difficult Diseases, 2017,16(03):293-296+301.

[179] Hood W B, Jr., Dans A L, Guyatt G H, et al. Digitalis for treatment of heart failure in patients in sinus rhythm[J]. Cochrane Database Syst Rev, 2014, 2014 (4): Cd002901. DOI: 10.1002/14651858.CD002901.pub3.

[180] Guan Jiajia, Chen Fei, Wu Jiale, et al. Experimental study on the improvement of cardiac function and vascular endothelial function in diabetic heart failure rats with Qiliang Qiangxin Capsules [J]. Journal of Integrated Traditional Chinese and Western Medicine, 2014,24(08):669-672.

[181] Liang T, Zhang Y, Yin S, et al. Cardio-protecteffect of qiliqiangxin capsule on left ventricular remodeling, dysfunction and apoptosis in heart failure rats after chronic myocardial infarction[J]. Am J Transl Res, 2016 (5): 2047-58.

- [182] Chang Liping. Mechanism of Action and Metabolomics of Qili Cardiac Capsules in Treating Chronic Heart Failure [D]. Hebei: Hebei Medical University, 2017.
- [183] Cui X, Zhang J, Li Y, et al. Effects of Qili Qiangxin Capsule on AQP2, V2R, and AT1R in Rats with Chronic Heart Failure[J]. Evid Based Complement Alternat Med, 2015, 2015: 639450. DOI: 10.1155/2015/639450.
- [184] Ma Liuyi, Yin Yujie, Zhang Junfang, et al. Effects of Miliang Qiangxin Capsules on the Hypothalamic Paraventricular Nucleus RAS System and the Sympathetic Nervous System in Chronic Heart Failure Rats []]. China Journal of Pharmacology, 2016,32(04):575-580.
- [185] Mie Hongying, Lang Yansong, Tang Siwen et al. Effects of intracerebroventricular injection of Qiliang Xinqi Capsules on chronic heart failure rats [J]. Traditional Chinese Medicine Pharmacology and Clinical Practice, 2014,30(05):128-131.DOI: 10.13412/j.cnki.zyyl.2014.05.041.
- [186] Bai Ling, Wang Jun, Liu Ping, et al. Comparative study on the effects of Milaxia Qiangxin Capsules and Metoprolol on cardiac function and BNP in heart failure rats [J]. China Journal of Evidence-Based Cardiovascular Medicine, 2014,6(04):408-410.
- [187] Misheng Ying. Mechanism of CRH Neuron Activation in Paraventricular Nucleus of Chronic Congestive Heart Failure Rats and Intervention with Qiliang Xinqing Capsule [D]. Hebei: Hebei Medical University, 2015.
- [188] Han A, Lu Y, Zheng Q, et al. Qiliqiangxin Attenuates Cardiac Remodeling via Inhibition of TGF-β1/Smad3 and NF-κB Signaling Pathways in a Rat Model of Myocardial Infarction[J]. Cell Physiol Biochem, 2018, 45 (5): 1797-1806. DOI: 10.1159/000487871.
- [189] Xiao H, Song Y, Li Y, et al. Qiliqiangxin regulates the balance between tumor necrosis factor-alpha and interleukin-10 and improves cardiac function in rats with myocardial infarction[J]. Cell Immunol, 2009, 260 (1): 51-5. DOI: 10.1016/j.cellimm.2009.09.001.
- [190] Liao Y H, Yuan J, Jin X J, et al. Qiliqiangxin Alleviates Imbalance of Inflammatory Cytokines in Patients with Dilated Cardiomyopathy: A Randomized Controlled Trial[J]. Curr Med Sci, 2024, 44 (6): 1081-1090. DOI: 10.1007/s11596-024-2916-9.
- [191] Huang Zheng, Fang Cunming, Ma Xiaolin, et al. "Effect of Qili Qiangxin Capsules on Reducing Myocardial Inflammatory Reactions in Heart Failure Rats via TLR4/NF- K B Pathway" [J]. Chongqing Medical Journal, 2020,49(02):183-187.
- [192] Hao J M, Sun P, Zeng Y, et al. Qiliqiangxin capsule improves cardiac remodeling in rats with DOCA-salt-induced diastolic dysfunction[J]. Eur Rev Med Pharmacol Sci, 2023, 27 (15): 7264-7275. DOI: 10.26355/eurrev_202308_33298.
- [193] Lu Y, Xiang M, Xin L, et al. Qiliqiangxin Modulates the Gut Microbiota and NLRP3 Inflammasome to Protect Against Ventricular Remodeling in Heart Failure[J]. Front Pharmacol, 2022, 13: 905424. DOI: 10.3389/fphar.2022.905424.
- [194] Zhao Q, Li H, Chang L, et al. Qiliqiangxin Attenuates Oxidative Stress-Induced Mitochondrion-Dependent Apoptosis in Cardiomyocytes via PI3K/AKT/GSK3β Signaling Pathway[J]. Biol Pharm Bull, 2019, 42 (8): 1310-1321. DOI: 10.1248/bpb.b19-00050.

[195] Zhou J, Jiang K, Ding X, et al. Qiliqiangxin inhibits angiotensin II-induced transdifferentiation of rat cardiac fibroblasts through suppressing interleukin-6[J]. J Cell Mol Med, 2015, 19 (5): 1114-21. DOI: 10.1111/jcmm.12512.

[196] Sun Xuantao, Zhong Qing, Zhang Rong, et al. Mechanism of Qili Qiangxin Capsules in Inhibiting Doxorubicin-Induced Myocardial Fibroblast Activation [J]. Journal of Traditional Chinese Medicine, 2023,51(12):22-28. DOI: 10.19664/j.cnki.1002-2392.230251.

[197] Ji Xiaodi, Wu Aiming, Lü Meng, et al. Exploring the Mechanism of Qiliqiangxin Capsule on Myocardial Fibrosis in Infarction-Rated Rats via the miRNA-133a/TGF- β 1/Smads Signal Pathway [J]. Journal of Hainan Medical University, 2022,28(21):1608-1613.DOI: 10.13210/j.cnki.jhmu.20220331.002.

[198] Sun X, Chen G, Xie Y, et al. Qiliqiangxin improves cardiac function and attenuates cardiac remodelling in doxorubicin-induced heart failure rats[J]. Pharm Biol, 2020, 58 (1): 417-426. DOI: 10.1080/13880209.2020.1761403.

[199] Lin S, Wu X, Tao L, et al. The Metabolic Effects of Traditional Chinese Medication Qiliqiangxin on H9C2 Cardiomyocytes[J]. Cell Physiol Biochem, 2015, 37 (6): 2246-56. DOI: 10.1159/000438580.

[200] Gao R R, Wu X D, Jiang H M, et al. Traditional Chinese medicine Qiliqiangxin attenuates phenylephrine-induced cardiac hypertrophy via upregulating PPAR γ and PGC-1 α [J]. Ann Transl Med, 2018, 6 (8): 153. DOI: 10.21037/atm.2018.04.14.

[201] Wang Y, Fu M, Wang J, et al. Qiliqiangxin Improves Cardiac Function through Regulating Energy Metabolism via HIF-1 α -Dependent and Independent Mechanisms in Heart Failure Rats after Acute Myocardial Infarction[J]. Biomed Res Int, 2020, 2020: 1276195. DOI: 10.1155/2020/1276195.

[202] Cheng W, Wang L, Yang T, et al. Qiliqiangxin Capsules Optimize Cardiac Metabolism Flexibility in Rats With Heart Failure After Myocardial Infarction[J]. Front Physiol, 2020, 11: 805. DOI: 10.3389/fphys.2020.00805.

[203] Zhang J, Wei C, Wang H, et al. Protective effect of qiliqiangxin capsule on energy metabolism and myocardial mitochondria in pressure overload heart failure rats[J]. Evid Based Complement Alternat Med, 2013, 2013: 378298. DOI: 10.1155/2013/378298.

[204] Tao L, Shen S, Fu S, et al. Traditional Chinese Medication Qiliqiangxin attenuates cardiac remodeling after acute myocardial infarction in mice[J]. Sci Rep, 2015, 5: 8374. DOI: 10.1038/srep08374.

[205] Zhang Junfang, Tang Siwen, Wang Hongtao, et al. Effects of Qili Qiangxin Capsules on Endothelial Damage and Energy Metabolism in Stress-Overloaded Heart Failure Rats [J]. Journal of Traditional Chinese Medicine, 2013,54(14):1221-1224+1229.DOI: 10.13288/j.11-2166/r.2013.14.022.

[206] Li F, Wang J, Song Y, et al. Qiliqiangxin alleviates Ang II-induced CMECs apoptosis by downregulating autophagy via the ErbB2-AKT-FoxO3a axis[J]. Life Sci, 2021, 273: 119239. DOI: 10.1016/j.lfs.2021.119239.

- [207] Wang J, Zhou J, Wang Y, et al. Qiliqiangxin protects against anoxic injury in cardiac microvascular endothelial cells via NRG-1/ErbB-PI3K/Akt/mTOR pathway[J]. J Cell Mol Med, 2017, 21 (9): 1905-1914. DOI: 10.1111/jcmm.13111.
- [208] Wang Y, Zhang J, Fu M, et al. Qiliqiangxin Prescription Promotes Angiogenesis of Hypoxic Primary Rat Cardiac Microvascular Endothelial Cells via Regulating miR-21 Signaling[J]. Curr Pharm Des, 2021, 27 (26): 2966-2974. DOI: 10.2174/1381612826666201005152709.
- [209] Wang J, Zhou J, Ding X, et al. Qiliqiangxin improves cardiac function and attenuates cardiac remodeling in rats with experimental myocardial infarction[J]. Int J Clin Exp Pathol, 2015 (6): 6596-606.
- [210] Zou Y, Lin L, Ye Y, et al. Qiliqiangxin inhibits the development of cardiac hypertrophy, remodeling, and dysfunction during 4 weeks of pressure overload in mice[J]. J Cardiovasc Pharmacol, 2012, 59 (3): 268-80. DOI: 10.1097/FJC.0b013e31823f888f.
- [211] Zhang J, Huang M, Shen S, et al. Qiliqiangxin attenuates isoproterenol-induced cardiac remodeling in mice[J]. Am J Transl Res, 2017 (12): 5585-5593.
- [212] Luo X, Zhou J, Wang Z, et al. An inhibitor role of Nrf2 in the regulation of myocardial senescence and dysfunction after myocardial infarction[J]. Life Sci, 2020, 259: 118199. DOI: 10.1016/j.lfs.2020.118199.
- [213] Ji X D, Yang D, Cui X Y, et al. Mechanism of Qili Qiangxin Capsule for Heart Failure Based on miR133a-Endoplasmic Reticulum Stress[J]. Chin J Integr Med, 2024, 30 (5): 398-407. DOI: 10.1007/s11655-024-3654-3.
- [214] Zhou J, Wang Z, He Y, et al. Qiliqiangxin reduced cardiomyocytes apotosis and improved heart function in infarcted heart through Pink1/Parkin -mediated mitochondrial autophagy[J]. BMC Complement Med Ther, 2020, 20 (1): 203. DOI: 10.1186/s12906-020-02992-7.
- [215] Fan C L, Cai W J, Ye M N, et al. Qili Qiangxin, a compound herbal medicine formula, alleviates hypoxia-reoxygenation-induced apoptotic and autophagic cell death via suppression of ROS/AMPK/mTOR pathway in vitro[J]. J Integr Med, 2022, 20 (4): 365-375. DOI: 10.1016/j.joim.2022.04.005.
- [216] Qin Y, Lv C, Zhang X, et al. Protective Effect of Qiliqiangxin against Doxorubicin-Induced Cardiomyopathy by Suppressing Excessive Autophagy and Apoptosis[J]. Cardiovasc Ther, 2022, 2022: 9926635. DOI: 10.1155/2022/9926635.
- [217] Fan C, Tang X, Ye M, et al. Qi-Li-Qiang-Xin Alleviates Isoproterenol-Induced Myocardial Injury by Inhibiting Excessive Autophagy via Activating AKT/mTOR Pathway[J]. Front Pharmacol, 2019, 10: 1329. DOI: 10.3389/fphar.2019.01329.
- [218] Zhou Y, Fang H, Lin S, et al. Qiliqiangxin Protects Against Cardiac Ischemia-Reperfusion Injury via Activation of the mTOR Pathway[J]. Cell Physiol Biochem, 2015, 37 (2): 454-64. DOI: 10.1159/000430368.
- [219] Cheang I, Yao W, Zhou Y, et al. The traditional Chinese medicine Qiliqiangxin in heart

failure with reduced ejection fraction: a randomized, double-blind, placebo-controlled trial[J]. Nat Med, 2024, 30 (8): 2295-2302. DOI: 10.1038/s41591-024-03169-2.

[220] Li X, Zhang J, Huang J, et al. A multicenter, randomized, double-blind, parallel-group, placebo-controlled study of the effects of qili qiangxin capsules in patients with chronic heart failure[J]. J Am Coll Cardiol, 2013, 62 (12): 1065-1072. DOI: 10.1016/j.jacc.2013.05.035.

[221] Mao Tianshi, Li Yuxuan, Pang Yanting, et al. Meta-analysis of Miliangouxin for chronic heart failure [J]. Journal of Clinical Cardiovascular Diseases, 2024,40(12):998-1005. DOI: 10.13201/j.issn.1001-1439.2024.12.010.

[222] Li Yanxia, Jia Zhenhua, Zhang Xinyue. Effects of Qili Qiangxin Capsules on Cardiac Diastolic Function in Patients with Chronic Diastolic Heart Failure [J]. Journal of Difficult Diseases, 2013,12(04):261-263.

[223] Gong Guihong, Zhang Haibo, Yang Jiantao, et al. Efficacy of Mili Qiangxin Capsules combined with Valsartan in treating diastolic heart failure [J]. Chinese Journal of Integrated Traditional and Western Medicine in Cardiovascular Diseases, 2015,3(10):128-129.DOI: 10.16282/j.cnki.cn11-9336/r.2015.10.077.

[224] 李三军, 余松平, 胡林, 等. 芪苈强心胶囊联合西药治疗舒张性心力衰竭临床研究[J]. 实用中医药杂志, 2023, 39 (12): 2416-2418.

[225] Feng Ying, Jiang Yushu, He Qianwen, et al. Meta-analysis of the efficacy and safety of Miliang Qiangxin Capsules in treating diastolic heart failure [J]. Journal of Wuhan University (Medical Edition), 2015,36(06):992-999.DOI: 10.14188/j.1671-8852.2015.06.037.